Suppr超能文献

基于短分类生活方式暴露的结肠癌风险预测工具与使用连续测量的模型的性能比较。

Comparison of Performance Between a Short Categorized Lifestyle Exposure-based Colon Cancer Risk Prediction Tool and a Model Using Continuous Measures.

机构信息

Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.

Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, St. Louis, Missouri.

出版信息

Cancer Prev Res (Phila). 2018 Dec;11(12):841-848. doi: 10.1158/1940-6207.CAPR-18-0196. Epub 2018 Nov 16.

Abstract

Risk prediction models that estimate an individual's risk of developing colon cancer could be used for a variety of clinical and public health interventions, including offering high-risk individuals enhanced screening or lifestyle interventions. However, if risk prediction models are to be translated into actual clinical and public health practice, they must not only be valid and reliable, but also be easy to use. One way of accomplishing this might be to simplify the information that users of risk prediction tools have to enter, but it is critical to ensure no resulting detrimental effects on model performance. We compared the performance of a simplified, largely categorized exposure-based colon cancer risk model against a more complex, largely continuous exposure-based risk model using two prospective cohorts. Using data from the Nurses' Health Study and the Health Professionals Follow-up Study we included 816 incident colon cancer cases in women and 412 in men. The discrimination of models was not significantly different comparing a categorized risk prediction model with a continuous prediction model in women (c-statistic 0.600 vs. 0.609, = 0.07) and men (c-statistic 0.622 vs. 0.618, = 0.60). Both models had good calibration in men [observed case count/expected case count (O/E) = 1.05, > 0.05] but not in women (O/E = 1.19, < 0.01). Risk reclassification was slightly improved using categorized predictors in men [net reclassification index (NRI) = 0.041] and slightly worsened in women (NRI = -0.065). Categorical assessment of predictor variables may facilitate use of risk assessment tools in the general population without significant loss of performance.

摘要

风险预测模型可以用来估计个体患结肠癌的风险,这些模型可用于多种临床和公共卫生干预措施,包括为高风险个体提供增强筛查或生活方式干预。然而,如果要将风险预测模型转化为实际的临床和公共卫生实践,它们不仅必须有效和可靠,而且还必须易于使用。实现这一目标的一种方法可能是简化风险预测工具使用者必须输入的信息,但必须确保这不会对模型性能产生不利影响。我们比较了简化的、主要基于分类的结肠癌风险模型和更复杂的、主要基于连续的暴露风险模型的性能,使用了两个前瞻性队列。利用来自护士健康研究和卫生专业人员随访研究的数据,我们纳入了 816 例女性和 412 例男性的结肠癌发病病例。在女性中,分类风险预测模型与连续预测模型的区分度没有显著差异(c 统计量 0.600 与 0.609, = 0.07),在男性中也没有显著差异(c 统计量 0.622 与 0.618, = 0.60)。两个模型在男性中都具有良好的校准度[观察病例数/预期病例数(O/E)= 1.05, > 0.05],但在女性中则不然(O/E = 1.19, < 0.01)。使用分类预测因子可略微改善男性的风险再分类[净重新分类指数(NRI)= 0.041],但会略微恶化女性的风险再分类(NRI = -0.065)。对预测变量的分类评估可能会促进风险评估工具在普通人群中的使用,而不会显著降低性能。

相似文献

1
Comparison of Performance Between a Short Categorized Lifestyle Exposure-based Colon Cancer Risk Prediction Tool and a Model Using Continuous Measures.
Cancer Prev Res (Phila). 2018 Dec;11(12):841-848. doi: 10.1158/1940-6207.CAPR-18-0196. Epub 2018 Nov 16.
2
3
Validation of the Harvard Cancer Risk Index: a prediction tool for individual cancer risk.
J Clin Epidemiol. 2004 Apr;57(4):332-40. doi: 10.1016/j.jclinepi.2003.08.013.
4
Dietary information improves cardiovascular disease risk prediction models.
Eur J Clin Nutr. 2013 Jan;67(1):25-30. doi: 10.1038/ejcn.2012.175. Epub 2012 Nov 14.
5
Inclusion of a Genetic Risk Score into a Validated Risk Prediction Model for Colorectal Cancer in Japanese Men Improves Performance.
Cancer Prev Res (Phila). 2017 Sep;10(9):535-541. doi: 10.1158/1940-6207.CAPR-17-0141. Epub 2017 Jul 20.
6
Risk prediction of incident coronary heart disease in The Netherlands: re-estimation and improvement of the SCORE risk function.
Eur J Prev Cardiol. 2012 Aug;19(4):840-8. doi: 10.1177/1741826711410256. Epub 2011 May 6.
7
Colon cancer screening, lifestyle, and risk of colon cancer.
Cancer Causes Control. 2000 Jul;11(6):555-63. doi: 10.1023/a:1008924115604.
10

引用本文的文献

1
Validation of a breast cancer risk prediction model based on the key risk factors: family history, mammographic density and polygenic risk.
Breast Cancer Res Treat. 2023 Apr;198(2):335-347. doi: 10.1007/s10549-022-06834-7. Epub 2023 Feb 7.
3
Simplified Breast Risk Tool Integrating Questionnaire Risk Factors, Mammographic Density, and Polygenic Risk Score: Development and Validation.
Cancer Epidemiol Biomarkers Prev. 2021 Apr;30(4):600-607. doi: 10.1158/1055-9965.EPI-20-0900. Epub 2020 Dec 4.
5
Commentary: 20 years online with "Your Disease Risk".
Cancer Causes Control. 2021 Jan;32(1):5-11. doi: 10.1007/s10552-020-01356-3. Epub 2020 Oct 17.
6
Translating Cancer Risk Prediction Models into Personalized Cancer Risk Assessment Tools: Stumbling Blocks and Strategies for Success.
Cancer Epidemiol Biomarkers Prev. 2020 Dec;29(12):2389-2394. doi: 10.1158/1055-9965.EPI-20-0861. Epub 2020 Oct 12.

本文引用的文献

2
Cancer Statistics, 2017.
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
4
A Prospective Analysis of Meat Mutagens and Colorectal Cancer in the Nurses' Health Study and Health Professionals Follow-up Study.
Environ Health Perspect. 2016 Oct;124(10):1529-1536. doi: 10.1289/EHP238. Epub 2016 Apr 22.
5
Risk Prediction Models for Colorectal Cancer: A Systematic Review.
Cancer Prev Res (Phila). 2016 Jan;9(1):13-26. doi: 10.1158/1940-6207.CAPR-15-0274. Epub 2015 Oct 13.
7
Validation of Rosner-Colditz breast cancer incidence model using an independent data set, the California Teachers Study.
Breast Cancer Res Treat. 2013 Nov;142(1):187-202. doi: 10.1007/s10549-013-2719-3. Epub 2013 Oct 26.
8
Against quantiles: categorization of continuous variables in epidemiologic research, and its discontents.
BMC Med Res Methodol. 2012 Feb 29;12:21. doi: 10.1186/1471-2288-12-21.
9
Folate intake and risk of colorectal cancer and adenoma: modification by time.
Am J Clin Nutr. 2011 Apr;93(4):817-25. doi: 10.3945/ajcn.110.007781. Epub 2011 Jan 26.
10
Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers.
Stat Med. 2011 Jan 15;30(1):11-21. doi: 10.1002/sim.4085. Epub 2010 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验