SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, Scotland, UK.
School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, Scotland, UK.
Nat Commun. 2018 Nov 16;9(1):4817. doi: 10.1038/s41467-018-07248-0.
Molecular dyes, plasmonic nanoparticles and colloidal quantum dots are widely used in biomedical optics. Their operation is usually governed by spontaneous processes, which results in broad spectral features and limited signal-to-noise ratio, thus restricting opportunities for spectral multiplexing and sensing. Lasers provide the ultimate spectral definition and background suppression, and their integration with cells has recently been demonstrated. However, laser size and threshold remain problematic. Here, we report on the design, high-throughput fabrication and intracellular integration of semiconductor nanodisk lasers. By exploiting the large optical gain and high refractive index of GaInP/AlGaInP quantum wells, we obtain lasers with volumes 1000-fold smaller than the eukaryotic nucleus (V < 0.1 µm), lasing thresholds 500-fold below the pulse energies typically used in two-photon microscopy (E ≈ 0.13 pJ), and excellent spectral stability (<50 pm wavelength shift). Multiplexed labeling with these lasers allows cell-tracking through micro-pores, thus providing a powerful tool to study cell migration and cancer invasion.
分子染料、等离子体纳米粒子和胶体量子点广泛应用于生物医学光学。它们的运作通常受自发过程的控制,这导致了光谱特征较宽且信噪比有限,从而限制了光谱复用和传感的机会。激光提供了最终的光谱分辨率和背景抑制,并且最近已经证明了它们与细胞的集成。然而,激光的尺寸和阈值仍然是一个问题。在这里,我们报告了半导体纳米盘激光器的设计、高通量制造和细胞内集成。通过利用 GaInP/AlGaInP 量子阱的大光学增益和高折射率,我们获得了体积比真核细胞核小 1000 倍的激光器(V < 0.1 µm),激光阈值比双光子显微镜中通常使用的脉冲能量低 500 倍(E ≈ 0.13 pJ),并且具有出色的光谱稳定性(<50 pm 波长漂移)。使用这些激光器进行复用标记可以使细胞通过微孔进行跟踪,从而为研究细胞迁移和癌症侵袭提供了有力的工具。