Suppr超能文献

发育中婴儿连接组脑图谱的形状和生长脑网络图谱估计

ESTIMATION OF SHAPE AND GROWTH BRAIN NETWORK ATLASES FOR CONNECTOMIC BRAIN MAPPING IN DEVELOPING INFANTS.

作者信息

Rekik Islem, Li Gang, Lin Weili, Shen Dinggang

机构信息

BASIRA lab, CVIP group, School of Science and Engineering, Computing, University of Dundee, UK.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:985-989. doi: 10.1109/ISBI.2018.8363736. Epub 2018 May 24.

Abstract

brain connectomics have heavily relied on using functional and diffusion Magnetic Resonance Imaging (MRI) modalities to examine functional and structural relationships between pairs of anatomical regions in the brain. However, research work on brain (i.e., shape-to-shape) connections, which can be derived from T1-w and T2-w MR images, in both typical and atypical development or ageing is very scarce. Furthermore, the brain cannot be only regarded as a static shape, since it is a dynamic complex system that changes at functional, structural and morphological levels. Hence, examining the 'connection' between brain and its changes with time (e.g., ) may help advance our understanding of connectomic brain dynamics as well as disorders that may affect it. To address these limitations, we unprecedentedly introduce two shape and growth connectivity analysis tools that further extend the field of connectomics to brain morphology and dynamics: . Specifically, for a population of anatomically labelled shapes, the identifies a network of anatomical shape regions that are connected when morphologically similar at a single timepoint, whereas the identifies anatomical shape regions that elicit similar evolution dynamics across successive timepoints. These proposed tools can be easily invested to examine how a baseline shape influences its deformation trajectory at later timepoints using longitudinal shape data. We evaluated these tools on 23 infants, with right and left cortical surfaces reconstructed at birth, 3, 6, 9 and 12 months of age. Investigating the relationship between the and the (from birth to 1 year of age) gave insights into brain connectivity at birth and how it develops over time.

摘要

脑连接组学在很大程度上依赖于使用功能磁共振成像和扩散磁共振成像(MRI)模态来检查大脑中各对解剖区域之间的功能和结构关系。然而,关于在典型和非典型发育或衰老过程中,可从T1加权和T2加权MR图像得出的脑(即形状与形状之间)连接的研究工作非常稀少。此外,大脑不能仅仅被视为一个静态形状,因为它是一个在功能、结构和形态层面都会发生变化的动态复杂系统。因此,研究大脑形状及其随时间的变化(例如)之间的“连接”,可能有助于推进我们对连接组脑动力学以及可能影响它的疾病的理解。为了解决这些局限性,我们前所未有的引入了两种形状和生长连通性分析工具,它们将连接组学领域进一步扩展到脑形态学和动力学:。具体来说,对于一组经解剖学标记的形状,在单个时间点形态相似时,识别出相互连接的解剖形状区域网络,而则识别出在连续时间点引发相似演化动力学的解剖形状区域。利用纵向形状数据,这些提出的工具可以很容易地用于研究基线形状如何影响其在后续时间点的变形轨迹。我们在23名婴儿身上评估了这些工具,这些婴儿在出生时、3个月、6个月、9个月和12个月大时重建了左右皮质表面。研究出生至1岁期间和之间的关系,有助于深入了解出生时的脑连接性及其随时间的发展情况。

相似文献

1
ESTIMATION OF SHAPE AND GROWTH BRAIN NETWORK ATLASES FOR CONNECTOMIC BRAIN MAPPING IN DEVELOPING INFANTS.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:985-989. doi: 10.1109/ISBI.2018.8363736. Epub 2018 May 24.
2
Unsupervised Manifold Learning Using High-Order Morphological Brain Networks Derived From T1-w MRI for Autism Diagnosis.
Front Neuroinform. 2018 Oct 26;12:70. doi: 10.3389/fninf.2018.00070. eCollection 2018.
4
A comparative study of machine learning methods for predicting the evolution of brain connectivity from a baseline timepoint.
J Neurosci Methods. 2022 Feb 15;368:109475. doi: 10.1016/j.jneumeth.2022.109475. Epub 2022 Jan 4.
5
Toward Developmental Connectomics of the Human Brain.
Front Neuroanat. 2016 Mar 31;10:25. doi: 10.3389/fnana.2016.00025. eCollection 2016.
6
The relation between structural and functional connectivity patterns in complex brain networks.
Int J Psychophysiol. 2016 May;103:149-60. doi: 10.1016/j.ijpsycho.2015.02.011. Epub 2015 Feb 10.
9
It's All About the Networks.
Epilepsy Curr. 2019 May-Jun;19(3):165-167. doi: 10.1177/1535759719843301. Epub 2019 Apr 29.

本文引用的文献

1
Heritability of the shape of subcortical brain structures in the general population.
Nat Commun. 2016 Dec 15;7:13738. doi: 10.1038/ncomms13738.
2
Multimodal population brain imaging in the UK Biobank prospective epidemiological study.
Nat Neurosci. 2016 Nov;19(11):1523-1536. doi: 10.1038/nn.4393. Epub 2016 Sep 19.
3
A multi-modal parcellation of human cerebral cortex.
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
4
Multidirectional and Topography-based Dynamic-scale Varifold Representations with Application to Matching Developing Cortical Surfaces.
Neuroimage. 2016 Jul 15;135:152-62. doi: 10.1016/j.neuroimage.2016.04.037. Epub 2016 Apr 30.
6
Age-Related Cortical Thickness Reduction in Non-Demented Down's Syndrome Subjects.
J Neuroimaging. 2016 Jan-Feb;26(1):95-102. doi: 10.1111/jon.12259. Epub 2015 May 21.
7
Similarity network fusion for aggregating data types on a genomic scale.
Nat Methods. 2014 Mar;11(3):333-7. doi: 10.1038/nmeth.2810. Epub 2014 Jan 26.
8
Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces.
Neuroimage. 2014 Apr 15;90:266-79. doi: 10.1016/j.neuroimage.2013.12.038. Epub 2013 Dec 27.
10
The economy of brain network organization.
Nat Rev Neurosci. 2012 Apr 13;13(5):336-49. doi: 10.1038/nrn3214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验