Suppr超能文献

各种周伪成分和简化氨基酸组成分析和预测动物毒素。

Analysis and prediction of animal toxins by various Chou's pseudo components and reduced amino acid compositions.

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.

The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.

出版信息

J Theor Biol. 2019 Feb 7;462:221-229. doi: 10.1016/j.jtbi.2018.11.010. Epub 2018 Nov 16.

Abstract

The animal toxin proteins are one of the disulfide rich small peptides that detected in venomous species. They are used as pharmacological tools and therapeutic agents in medicine for the high specificity of their targets. The successful analysis and prediction of toxin proteins may have important signification for the pharmacological and therapeutic researches of toxins. In this study, significant differences were found between the toxins and the non-toxins in amino acid compositions and several important biological properties. The random forest was firstly proposed to predict the animal toxin proteins by selecting 400 pseudo amino acid compositions and the dipeptide compositions of reduced amino acid alphabet as the input parameters. Based on dipeptide composition of reduced amino acid alphabet with 13 reduced amino acids, the best overall accuracy of 85.71% was obtained. These results indicated that our algorithm was an efficient tool for the animal toxin prediction.

摘要

动物毒素蛋白是在毒液物种中检测到的富含二硫键的小肽之一。它们被用作医学中的药理学工具和治疗剂,因为它们的靶标具有高度特异性。成功分析和预测毒素蛋白对于毒素的药理学和治疗学研究可能具有重要意义。在这项研究中,在氨基酸组成和几个重要生物学特性方面,毒素和非毒素之间存在显著差异。首先提出了随机森林来预测动物毒素蛋白,选择了 400 个伪氨基酸组成和简化氨基酸字母的二肽组成作为输入参数。基于简化氨基酸字母的二肽组成,使用 13 个简化氨基酸,获得了最佳的整体准确率为 85.71%。这些结果表明,我们的算法是一种用于动物毒素预测的有效工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验