Razooky Brandon S, Cao Youfang, Hansen Maike M K, Perelson Alan S, Simpson Michael L, Weinberger Leor S
Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America.
The Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America.
PLoS Biol. 2017 Oct 18;15(10):e2000841. doi: 10.1371/journal.pbio.2000841. eCollection 2017 Oct.
Fundamental to biological decision-making is the ability to generate bimodal expression patterns where 2 alternate expression states simultaneously exist. Here, we use a combination of single-cell analysis and mathematical modeling to examine the sources of bimodality in the transcriptional program controlling HIV's fate decision between active replication and viral latency. We find that the HIV transactivator of transcription (Tat) protein manipulates the intrinsic toggling of HIV's promoter, the long terminal repeat (LTR), to generate bimodal ON-OFF expression and that transcriptional positive feedback from Tat shifts and expands the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and full-length virus. Strikingly, computational analysis indicates that the Tat circuit's noncooperative "nonlatching" feedback architecture is optimized to slow the promoter's toggling and generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson model, theory and experiment show that nonlatching positive feedback substantially dampens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing mean expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate bimodal expression appears consistent with the hypothesis that HIV's decision between active replication and latency provides a viral fitness advantage. More broadly, the results suggest that positive-feedback circuits may have evolved not only for signal amplification but also for robustly generating bimodality by decoupling expression fluctuations (noise) from mean expression levels.
生物决策的基础是能够产生双峰表达模式,即两种交替的表达状态同时存在。在这里,我们结合单细胞分析和数学建模,研究在控制HIV在活跃复制和病毒潜伏之间命运抉择的转录程序中双峰性的来源。我们发现,HIV转录反式激活因子(Tat)蛋白操纵HIV启动子(长末端重复序列,LTR)的内在切换,以产生双峰的开-关表达,并且Tat的转录正反馈会改变并扩大LTR双峰性的范围。这一结果在最小的合成病毒回路和全长病毒中均成立。引人注目的是,计算分析表明,Tat回路的非合作“非锁定”反馈结构经过优化,可减缓启动子的切换,并通过Tat的随机消除产生双峰性。与标准泊松模型不同,理论和实验表明,尽管平均表达水平有所提高,但非锁定正反馈会显著抑制反向噪声-均值关系,以维持随机双峰性。鉴于HIV的快速进化,存在一个经过优化以稳健地产生双峰表达的回路,这似乎与HIV在活跃复制和潜伏之间的抉择提供病毒适应性优势这一假设相一致。更广泛地说,结果表明正反馈回路的进化可能不仅是为了信号放大,也是为了通过将表达波动(噪声)与平均表达水平解耦来稳健地产生双峰性。