Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
Biomaterials. 2019 Feb;192:245-259. doi: 10.1016/j.biomaterials.2018.11.010. Epub 2018 Nov 10.
While polymeric nano-formulations for RNAi therapeutics hold great promise for molecularly-targeted, personalized medicine, they possess significant systemic delivery challenges including rapid clearance from circulation and the potential for carrier-associated toxicity due to cationic polymer or lipid components. Herein, we evaluated the in vivo pharmacokinetic and safety impact of often-overlooked formulation parameters, including the ratio of carrier polymer to cargo siRNA and hydrophobic siRNA modification in combination with hydrophobic polymer components (dual hydrophobization). For these studies, we used nano-polyplexes (NPs) with well-shielded, zwitterionic coronas, resulting in various NP formulations of equivalent hydrodynamic size and neutral surface charge regardless of charge ratio. Doubling nano-polyplex charge ratio from 10 to 20 increased circulation half-life five-fold and pharmacokinetic area under the curve four-fold, but was also associated with increased liver enzymes, a marker of hepatic damage. Dual hydrophobization achieved by formulating NPs with palmitic acid-modified siRNA (siPA-NPs) both reduced the amount of carrier polymer required to achieve optimal pharmacokinetic profiles and abrogated liver toxicities. We also show that optimized zwitterionic siPA-NPs are well-tolerated upon long-term, repeated administration in mice and exhibit greater than two-fold increased uptake in orthotopic MDA-MB-231 xenografts compared to commercial transfection reagent, in vivo-jetPEI. These data suggest that charge ratio optimization has important in vivo implications and that dual hydrophobization strategies can be used to maximize both NP circulation time and safety.
虽然用于 RNAi 治疗的聚合纳米制剂为分子靶向、个性化医学提供了巨大的前景,但它们在系统给药方面仍存在重大挑战,包括从循环中快速清除以及由于阳离子聚合物或脂质成分而导致载体相关毒性的潜在风险。在此,我们评估了经常被忽视的制剂参数的体内药代动力学和安全性影响,包括载体聚合物与 cargo siRNA 的比例以及与疏水聚合物成分(双重疏水化)结合的疏水 siRNA 修饰。对于这些研究,我们使用了具有良好屏蔽作用的两性离子冠状的纳米多聚物(NPs),从而产生了各种纳米多聚物制剂,其水动力大小和中性表面电荷相同,而与电荷比无关。将纳米多聚物的电荷比从 10 增加到 20,可使循环半衰期延长五倍,药代动力学曲线下面积增加四倍,但也与肝酶升高有关,肝酶是肝损伤的标志物。通过用棕榈酸修饰的 siRNA(siPA-NPs)来制备 NPs,实现双重疏水化,这既减少了达到最佳药代动力学曲线所需的载体聚合物的量,又消除了肝毒性。我们还表明,经过优化的两性离子 siPA-NPs 在长期重复给药的情况下在小鼠中具有良好的耐受性,并且与商业转染试剂体内喷射 PEI 相比,在原位 MDA-MB-231 异种移植中摄取量增加了两倍以上。这些数据表明,电荷比优化具有重要的体内意义,并且双重疏水化策略可用于最大限度地延长 NP 循环时间和提高安全性。