Zhang Guang K, Chain Frédéric J J, Abbott Cathryn L, Cristescu Melania E
Department of Biology McGill University Montreal Quebec Canada.
Present address: Department of Biological Sciences University of Massachusetts Lowell One University Avenue Lowell MA.
Evol Appl. 2018 Sep 15;11(10):1901-1914. doi: 10.1111/eva.12694. eCollection 2018 Dec.
Metabarcoding combines DNA barcoding with high-throughput sequencing, often using one genetic marker to understand complex and taxonomically diverse samples. However, species-level identification depends heavily on the choice of marker and the selected primer pair, often with a trade-off between successful species amplification and taxonomic resolution. We present a versatile metabarcoding protocol for biomonitoring that involves the use of two barcode markers (COI and 18S) and four primer pairs in a single high-throughput sequencing run, via sample multiplexing. We validate the protocol using a series of 24 mock zooplanktonic communities incorporating various levels of genetic variation. With the use of a single marker and single primer pair, the highest species recovery was 77%. With all three COI fragments, we detected 62%-83% of species across the mock communities, while the use of the 18S fragment alone resulted in the detection of 73%-75% of species. The species detection level was significantly improved to 89%-93% when both markers were used. Furthermore, multiplexing did not have a negative impact on the proportion of reads assigned to each species and the total number of species detected was similar to when markers were sequenced alone. Overall, our metabarcoding approach utilizing two barcode markers and multiple primer pairs per barcode improved species detection rates over a single marker/primer pair by 14% to 35%, making it an attractive and relatively cost-effective method for biomonitoring natural zooplankton communities. We strongly recommend combining evolutionary independent markers and, when necessary, multiple primer pairs per marker to increase species detection (i.e., reduce false negatives) in metabarcoding studies.
宏条形码技术将DNA条形码技术与高通量测序相结合,通常使用一个遗传标记来了解复杂且分类多样的样本。然而,物种水平的鉴定在很大程度上取决于标记和所选引物对的选择,在成功的物种扩增和分类分辨率之间常常需要权衡。我们提出了一种用于生物监测的通用宏条形码技术方案,该方案通过样本多重分析,在一次高通量测序运行中使用两个条形码标记(细胞色素氧化酶亚基I(COI)和18S核糖体RNA)和四对引物。我们使用一系列包含不同水平遗传变异的24个模拟浮游动物群落对该方案进行了验证。使用单个标记和单个引物对时,最高物种回收率为77%。使用所有三个COI片段,我们在模拟群落中检测到了62%-83%的物种,而单独使用18S片段则检测到了73%-75%的物种。当同时使用这两个标记时,物种检测水平显著提高到89%-93%。此外,多重分析对分配给每个物种的读数比例没有负面影响,检测到的物种总数与单独对标记进行测序时相似。总体而言,我们利用两个条形码标记和每个条形码多对引物的宏条形码技术方法比单个标记/引物对的物种检测率提高了14%至35%,使其成为一种有吸引力且相对经济高效的生物监测自然浮游动物群落的方法。我们强烈建议在宏条形码技术研究中结合进化上独立的标记,并在必要时每个标记使用多对引物,以提高物种检测率(即减少假阴性)。