Hong Lingyu, Li Hao, Yang Haw, Sengupta Kaushik
Department of Electrical Engineering. Princeton University, NJ 08544, USA.
Department of Chemistry, Princeton University, NJ 08544, USA.
Biomed Opt Express. 2018 Oct 26;9(11):5735-5758. doi: 10.1364/BOE.9.005735. eCollection 2018 Nov 1.
The ultra-miniaturization of massively multiplexed fluorescence-based bio-molecular sensing systems for proteins and nucleic acids into a chip-scale form, small enough to fit inside a pill (∼ 0.1cm), can revolutionize sensing modalities in-vitro and in-vivo. Prior miniaturization techniques have been limited to focusing on traditional optical components (multiple filter sets, lenses, photo-detectors, etc.) arranged in new packaging systems. Here, we report a method that eliminates all external optics and miniaturizes an entire multiplexed fluorescence system into a 2 × 1 mm chip through co-integration for the first time of massively scalable nano-plasmonic multi-functional optical elements and electronic processing circuitry realized in an industry standard complementary-metal-oxide semiconductor (CMOS) foundry process with absolutely 'no change' in fabrication or processing. The implemented nano-waveguide based filters operating in the visible and near-IR realized with the embedded sub-wavelength multi-layer copper-based electronic interconnects inside the chip show for the first time a sub-wavelength surface plasmon polariton mode inside CMOS. This is the principle behind the angle-insensitive nature of the filtering that operates in the presence of uncollimated and scattering environments, enabling the first optics-free 96-sensor CMOS fluorescence sensing system. The chip demonstrates the surface sensitivity of zeptomoles of quantum dot-based labels, and volume sensitivities of ∼ 100 fM for nucleic acids and ∼ 5 pM for proteins that are comparable to, if not better, than commercial fluorescence readers. The ability to integrate multi-functional nano-optical structures in a commercial CMOS process, along with all the complex electronics, can have a transformative impact and enable a new class of miniaturized and scalable chip-sized optical sensors.
将基于荧光的大规模多重蛋白质和核酸生物分子传感系统超小型化为芯片规模,小到足以装入药丸(约0.1厘米),这可能会彻底改变体外和体内的传感方式。先前的小型化技术一直局限于专注于在新的封装系统中排列的传统光学组件(多个滤光片组、透镜、光电探测器等)。在此,我们首次报告了一种方法,该方法通过将大规模可扩展的纳米等离子体多功能光学元件和电子处理电路共同集成,在工业标准的互补金属氧化物半导体(CMOS)代工工艺中实现,且在制造或加工过程中“完全不变”,从而消除了所有外部光学元件,并将整个多重荧光系统小型化为一个2×1毫米的芯片。芯片内基于纳米波导的滤波器在可见光和近红外波段工作,通过嵌入的亚波长多层铜基电子互连实现,首次在CMOS内展示了亚波长表面等离子体激元模式。这就是在存在非准直和散射环境下工作的角度不敏感滤波原理,从而实现了首个无光学元件的96传感器CMOS荧光传感系统。该芯片展示了基于量子点标记的zeptomole级表面灵敏度,以及对核酸约100 fM和对蛋白质约5 pM的体积灵敏度,即便不比商业荧光读数器更好,也与之相当。能够在商业CMOS工艺中集成多功能纳米光学结构以及所有复杂电子元件,可能会产生变革性影响,并催生一类新型的小型化、可扩展的芯片尺寸光学传感器。