Wu Xue, Lu Huaixi, Sengupta Kaushik
Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA.
Nat Commun. 2019 Jun 20;10(1):2722. doi: 10.1038/s41467-019-09868-6.
The ability to sense terahertz waves in a chip-scale technology operable at room temperature has potential for transformative applications in chemical sensing, biomedical imaging, spectroscopy and security. However, terahertz sensors are typically limited in their responsivity to a narrow slice of the incident field properties including frequency, angle of incidence and polarization. Sensor fusions across these field properties can revolutionize THz sensing allowing robustness, versatility and real-time imaging. Here, we present an approach that incorporates frequency, pattern and polarization programmability into a miniaturized chip-scale THz sensor. Through direct programming of a continuous electromagnetic interface at deep subwavelength scales, we demonstrate the ability to program the sensor across the spectrum (0.1-1.0 THz), angle of incidence and polarization simultaneously in a single chip implemented in an industry standard 65-nm CMOS process. The methodology is compatible with other technology substrates that can allow extension of such programmability into other spectral regions.
在室温下可操作的芯片级技术中感知太赫兹波的能力,在化学传感、生物医学成像、光谱学和安全领域具有变革性应用的潜力。然而,太赫兹传感器的响应性通常局限于入射场特性的狭窄范围,包括频率、入射角和偏振。跨越这些场特性的传感器融合可以彻底改变太赫兹传感,实现鲁棒性、多功能性和实时成像。在此,我们提出一种方法,将频率、模式和偏振可编程性集成到小型化的芯片级太赫兹传感器中。通过在深亚波长尺度上直接对连续电磁界面进行编程,我们展示了在采用行业标准65纳米CMOS工艺实现的单个芯片中,同时对传感器的整个频谱(0.1 - 1.0太赫兹)、入射角和偏振进行编程的能力。该方法与其他技术基板兼容,这可以将这种可编程性扩展到其他光谱区域。