Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
Departments of Biological Sciences and Neuroscience, Columbia University, New York, NY, 10027, USA.
Nat Commun. 2017 Nov 27;8(1):1802. doi: 10.1038/s41467-017-02009-x.
In traditional electrophysiology, spatially inefficient electronics and the need for tissue-to-electrode proximity defy non-invasive interfaces at scales of more than a thousand low noise, simultaneously recording channels. Using compressed sensing concepts and silicon complementary metal-oxide-semiconductors (CMOS), we demonstrate a platform with 65,536 simultaneously recording and stimulating electrodes in which the per-electrode electronics consume an area of 25.5 μm by 25.5 μm. Application of this platform to mouse retinal studies is achieved with a high-performance processing pipeline with a 1 GB/s data rate. The platform records from 65,536 electrodes concurrently with a ~10 µV r.m.s. noise; senses spikes from more than 34,000 electrodes when recording across the entire retina; automatically sorts and classifies greater than 1700 neurons following visual stimulation; and stimulates individual neurons using any number of the 65,536 electrodes while observing spikes over the entire retina. The approaches developed here are applicable to other electrophysiological systems and electrode configurations.
在传统的电生理学中,空间效率低下的电子设备以及对组织与电极接近的需求,使得在超过一千个低噪声、同时记录通道的尺度上,无法实现非侵入式接口。我们利用压缩感知概念和硅互补金属氧化物半导体(CMOS),展示了一个具有 65536 个同时记录和刺激电极的平台,其中每个电极的电子设备占用 25.5μm×25.5μm 的面积。通过具有 1GB/s 数据速率的高性能处理管道,实现了该平台在小鼠视网膜研究中的应用。该平台可以以约 10µV r.m.s. 的噪声同时记录来自 65536 个电极的信号;在整个视网膜上进行记录时,可以从超过 34000 个电极中感知尖峰信号;在视觉刺激后,可以自动对超过 1700 个神经元进行分类和聚类;并且可以在观察整个视网膜上的尖峰信号的同时,使用 65536 个电极中的任意数量来刺激单个神经元。这里开发的方法适用于其他电生理系统和电极配置。