Zhao Baodan, Lee Lana C, Yang Le, Pearson Andrew J, Lu Haizhou, She Xiao-Jian, Cui Linsong, Zhang Kelvin H L, Hoye Robert L Z, Karani Arfa, Xu Peicheng, Sadhanala Aditya, Greenham Neil C, Friend Richard H, MacManus-Driscoll Judith L, Di Dawei
Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom.
Department of Materials Science & Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , United Kingdom.
ACS Appl Mater Interfaces. 2018 Dec 12;10(49):41849-41854. doi: 10.1021/acsami.8b15503. Epub 2018 Nov 29.
Organic-inorganic perovskite solar cells have attracted significant attention due to their remarkable performance. The use of alternative metal-oxide charge-transport layers is a strategy to improving device reliability for large-scale fabrication and long-term applications. Here, we report solution-processed perovskite solar cells employing nickel oxide hole-extraction layers produced in situ using an atmospheric pressure spatial atomic-layer deposition system, which is compatible with high-throughput processing of electronic devices from solution. Our sub-nanometer smooth (average roughness of ≤0.6 nm) oxide films enable the efficient collection of holes and the formation of perovskite absorbers with high electronic quality. Initial solar-cell experiments show a power-conversion efficiency of 17.1%, near-unity ideality factors, and a fill factor of >80% with negligible hysteresis. Transient measurements reveal that a key contributor to this performance is the reduced luminescence quenching trap density in the perovskite/nickel oxide structure.
有机-无机钙钛矿太阳能电池因其卓越的性能而备受关注。使用替代金属氧化物电荷传输层是提高大规模制造和长期应用中器件可靠性的一种策略。在此,我们报道了采用通过大气压空间原子层沉积系统原位制备的氧化镍空穴提取层的溶液处理钙钛矿太阳能电池,该系统与溶液中电子器件的高通量处理兼容。我们的亚纳米级光滑(平均粗糙度≤0.6纳米)氧化膜能够有效地收集空穴,并形成具有高电子质量的钙钛矿吸收层。初步的太阳能电池实验表明,其功率转换效率为17.1%,理想因子接近1,填充因子>80%,滞后现象可忽略不计。瞬态测量结果表明,这种性能的一个关键因素是钙钛矿/氧化镍结构中发光猝灭陷阱密度的降低。