Yuan Ye, Xun Guangxu, Jia Kebin, Zhang Aidong
College of Information and Communication Engineering, Beijing University of Technology, Beijing, China.
Beijing Laboratory of Advanced Information Networks, Beijing University of Technology, Beijing, China.
BMC Syst Biol. 2018 Nov 22;12(Suppl 6):107. doi: 10.1186/s12918-018-0626-2.
Epilepsy is a neurological disease characterized by unprovoked seizures in the brain. The recent advances in sensor technologies allow researchers to analyze the collected biological records to improve the treatment of epilepsy. Electroencephalogram (EEG) is the most commonly used biological measurement to effectively capture the abnormalities of different brain areas during the EEG seizures. To avoid manual visual inspection from long-term EEG readings, automatic epileptic EEG seizure detection has become an important research issue in bioinformatics.
We present a multi-context learning approach to automatically detect EEG seizures by incorporating a feature fusion strategy. We generate EEG scalogram sequences from the EEG records by utilizing waveform transform to describe the frequency content over time. We propose a multi-stage unsupervised model that integrates the features extracted from the global handcrafted engineering, channel-wise deep learning, and EEG embeddings, respectively. The learned multi-context features are subsequently merged to train a seizure detector.
To validate the effectiveness of the proposed approach, extensive experiments against several baseline methods are carried out on two benchmark biological datasets. The experimental results demonstrate that the representative context features from multiple perspectives can be learned by the proposed model, and further improve the performance for the task of EEG seizure detection.
癫痫是一种以大脑无端发作癫痫为特征的神经系统疾病。传感器技术的最新进展使研究人员能够分析收集到的生物记录,以改善癫痫的治疗。脑电图(EEG)是最常用的生物测量方法,可在癫痫发作期间有效捕捉不同脑区的异常情况。为避免对长期脑电图读数进行人工目视检查,自动癫痫脑电图发作检测已成为生物信息学中的一个重要研究问题。
我们提出了一种多上下文学习方法,通过结合特征融合策略自动检测脑电图发作。我们利用波形变换从脑电图记录中生成脑电图尺度图序列,以描述随时间变化的频率内容。我们提出了一个多阶段无监督模型,该模型分别整合了从全局手工工程、通道级深度学习和脑电图嵌入中提取的特征。随后将学习到的多上下文特征合并起来训练一个癫痫发作检测器。
为了验证所提方法的有效性,我们在两个基准生物数据集上针对几种基线方法进行了广泛的实验。实验结果表明,所提模型能够从多个角度学习到具有代表性的上下文特征,并进一步提高脑电图发作检测任务的性能。