Suppr超能文献

纳米医学与免疫肿瘤学中的宏观材料。

Nanomedicine and macroscale materials in immuno-oncology.

机构信息

Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany.

出版信息

Chem Soc Rev. 2019 Jan 2;48(1):351-381. doi: 10.1039/c8cs00473k.

Abstract

Immunotherapy is revolutionizing the treatment of cancer. It can achieve unprecedented responses in advanced-stage patients, including complete cures and long-term survival. However, immunotherapy also has limitations, such as its relatively low response rates and the development of severe side effects. These drawbacks are gradually being overcome by improving our understanding of the immune system, as well as by establishing combination regimens in which immunotherapy is combined with other treatment modalities. In addition to this, in recent years, progress made in chemistry, nanotechnology and materials science has started to impact immuno-oncology, resulting in more effective and less toxic immunotherapy interventions. In this context, multiple different nanomedicine formulations and macroscale materials have been shown to be able to boost anti-cancer immunity and the efficacy of immunomodulatory drugs. We here review nanotechnological and materials chemistry efforts related to endogenous and exogenous vaccination, to the engineering of antigen-presenting cells and T cells, and to the modulation of the tumor microenvironment. We also discuss limitations, current trends and future directions. Together, the insights provided and the evidence obtained indicate that there is a bright future ahead for engineering nanomedicines and macroscale materials for immuno-oncology applications.

摘要

免疫疗法正在彻底改变癌症的治疗方式。它可以为晚期患者带来前所未有的疗效,包括完全治愈和长期生存。然而,免疫疗法也有其局限性,例如相对较低的反应率和严重副作用的发生。通过加深对免疫系统的了解,并将免疫疗法与其他治疗方法联合使用,这些缺陷正在逐渐得到克服。此外,近年来,化学、纳米技术和材料科学领域的进展开始对免疫肿瘤学产生影响,导致更有效、毒性更小的免疫治疗干预措施。在此背景下,多种不同的纳米药物制剂和宏观材料已被证明能够增强抗癌免疫和免疫调节药物的疗效。在这里,我们综述了与内源性和外源性疫苗接种、抗原呈递细胞和 T 细胞工程以及肿瘤微环境调节相关的纳米技术和材料化学方面的研究进展。我们还讨论了这些研究的局限性、当前的趋势和未来的方向。综上所述,提供的见解和获得的证据表明,为免疫肿瘤学应用工程化纳米药物和宏观材料的未来充满光明。

相似文献

1
Nanomedicine and macroscale materials in immuno-oncology.
Chem Soc Rev. 2019 Jan 2;48(1):351-381. doi: 10.1039/c8cs00473k.
2
Combining Nanomedicine and Immunotherapy.
Acc Chem Res. 2019 Jun 18;52(6):1543-1554. doi: 10.1021/acs.accounts.9b00148. Epub 2019 May 23.
3
Nanomedicine approaches for treatment of hematologic and oncologic malignancies.
World J Clin Oncol. 2022 Jul 24;13(7):553-566. doi: 10.5306/wjco.v13.i7.553.
4
Tumor-Targeted Nanomedicine for Immunotherapy.
Acc Chem Res. 2020 Dec 15;53(12):2765-2776. doi: 10.1021/acs.accounts.0c00518. Epub 2020 Nov 8.
5
Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy.
Acta Pharmacol Sin. 2020 Jul;41(7):986-994. doi: 10.1038/s41401-020-0400-z. Epub 2020 Apr 21.
6
Nanomedicines modulate the tumor immune microenvironment for cancer therapy.
Expert Opin Drug Deliv. 2024 Dec;21(12):1719-1733. doi: 10.1080/17425247.2024.2412245. Epub 2024 Oct 4.
7
Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy.
Adv Healthc Mater. 2019 Feb;8(4):e1801320. doi: 10.1002/adhm.201801320. Epub 2019 Jan 22.
8
Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges.
Nat Rev Clin Oncol. 2020 Apr;17(4):251-266. doi: 10.1038/s41571-019-0308-z. Epub 2020 Feb 7.
9
Tumor-Microenvironment-Responsive Nanomedicine for Enhanced Cancer Immunotherapy.
Adv Sci (Weinh). 2022 Jan;9(1):e2103836. doi: 10.1002/advs.202103836. Epub 2021 Nov 19.
10
Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment.
Acta Pharmacol Sin. 2020 Jul;41(7):970-985. doi: 10.1038/s41401-020-0424-4. Epub 2020 May 18.

引用本文的文献

1
Nanomaterials-mediated adenosine pathway inhibition for strengthening cancer immunotherapy.
Theranostics. 2025 Mar 31;15(11):5007-5028. doi: 10.7150/thno.108931. eCollection 2025.
4
Personalized cancer vaccines from bacteria-derived outer membrane vesicles with antibody-mediated persistent uptake by dendritic cells.
Fundam Res. 2021 Dec 22;2(1):23-36. doi: 10.1016/j.fmre.2021.11.032. eCollection 2022 Jan.
5
Smart Cancer Nanomedicine for Synergetic Therapy.
Curr Med Chem. 2025;32(2):286-300. doi: 10.2174/0109298673300897240602130258.
6
Role of the gut microbiota in tumorigenesis and treatment.
Theranostics. 2024 Mar 17;14(6):2304-2328. doi: 10.7150/thno.91700. eCollection 2024.
8
Peptide-Decorated Degradable Polycarbonate Nanogels for Eliciting Antigen-Specific Immune Responses.
Int J Mol Sci. 2023 Oct 21;24(20):15417. doi: 10.3390/ijms242015417.
9
Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment.
Bone Res. 2023 Feb 27;11(1):11. doi: 10.1038/s41413-023-00246-z.

本文引用的文献

1
TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy.
Nat Biomed Eng. 2018 Aug;2(8):578-588. doi: 10.1038/s41551-018-0236-8. Epub 2018 May 21.
2
Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer.
N Engl J Med. 2018 Nov 29;379(22):2108-2121. doi: 10.1056/NEJMoa1809615. Epub 2018 Oct 20.
3
Nanoparticle-Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses.
Adv Mater. 2018 Nov;30(45):e1803397. doi: 10.1002/adma.201803397. Epub 2018 Oct 1.
4
Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell.
Nat Med. 2018 Oct;24(10):1499-1503. doi: 10.1038/s41591-018-0201-9. Epub 2018 Oct 1.
5
Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy.
Front Immunol. 2018 Jul 2;9:1499. doi: 10.3389/fimmu.2018.01499. eCollection 2018.
6
Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery.
Nat Biotechnol. 2018 Sep;36(8):707-716. doi: 10.1038/nbt.4181. Epub 2018 Jul 9.
7
Understanding the tumor immune microenvironment (TIME) for effective therapy.
Nat Med. 2018 May;24(5):541-550. doi: 10.1038/s41591-018-0014-x. Epub 2018 Apr 23.
8
Designing hydrogels for controlled drug delivery.
Nat Rev Mater. 2016 Dec;1(12). doi: 10.1038/natrevmats.2016.71. Epub 2016 Oct 18.
9
Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies.
Cancer Cell. 2018 Apr 9;33(4):581-598. doi: 10.1016/j.ccell.2018.03.005.
10
Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E4041-E4050. doi: 10.1073/pnas.1720948115. Epub 2018 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验