Kishi Hirofumi, Sakamoto Tomokazu, Asazawa Koichiro, Yamaguchi Susumu, Kato Takeshi, Zulevi Barr, Serov Alexey, Artyushkova Kateryna, Atanassov Plamen, Matsumura Daiju, Tamura Kazuhisa, Nishihata Yasuo, Tanaka Hirohisa
Advanced R&D Department, Daihatsu Motor Co. Ltd., 3000 Yamanoue, Ryuo, Gamo, Shiga 520-2593, Japan.
Pajarito Powder Limited Liability Company (LLC), 3600 Osuna Rd NE, Suite 309, Albuquerque, NM 87102, USA.
Nanomaterials (Basel). 2018 Nov 22;8(12):965. doi: 10.3390/nano8120965.
Platinum group metal-free (PGM-free) catalysts based on transition metal-nitrogen-carbon nanomaterials have been studied by a combination of ex situ and in situ synchrotron X-ray spectroscopy techniques; high-resolution Transmission Electron Microscope (TEM); Mößbauer spectroscopy combined with electrochemical methods and Density Functional Theory (DFT) modeling/theoretical approaches. The main objective of this study was to correlate the HO₂ generation with the chemical nature and surface availability of active sites in iron-nitrogen-carbon (Fe-N-C) catalysts derived by sacrificial support method (SSM). These nanomaterials present a carbonaceous matrix with nitrogen-doped sites and atomically dispersed and; in some cases; iron and nanoparticles embedded in the carbonaceous matrix. Fe-N-C oxygen reduction reaction electrocatalysts were synthesized by varying several synthetic parameters to obtain nanomaterials with different composition and morphology. Combining spectroscopy, microscopy and electrochemical reactivity allowed the building of structure-to-properties correlations which demonstrate the contributions of these moieties to the catalyst activity, and mechanistically assign the active sites to individual reaction steps. Associated with Fe-N motive and the presence of Fe metallic particles in the electrocatalysts showed the clear differences in the variation of composition; processing and treatment conditions of SSM. From the results of material characterization; catalytic activity and theoretical studies; Fe metallic particles (coated with carbon) are main contributors into the HO₂ generation.
基于过渡金属-氮-碳纳米材料的无铂族金属(PGM-free)催化剂已通过非原位和原位同步加速器X射线光谱技术的组合进行了研究;高分辨率透射电子显微镜(TEM);穆斯堡尔光谱结合电化学方法以及密度泛函理论(DFT)建模/理论方法。本研究的主要目的是将HO₂的产生与通过牺牲载体法(SSM)得到的铁-氮-碳(Fe-N-C)催化剂中活性位点的化学性质和表面可用性相关联。这些纳米材料呈现出具有氮掺杂位点且原子分散的碳质基质,并且在某些情况下,铁和纳米颗粒嵌入在碳质基质中。通过改变几个合成参数来合成Fe-N-C氧还原反应电催化剂,以获得具有不同组成和形态的纳米材料。结合光谱学、显微镜学和电化学反应性,建立了结构-性能相关性,这证明了这些部分对催化剂活性的贡献,并从机理上为各个反应步骤确定了活性位点。与Fe-N基序以及电催化剂中Fe金属颗粒的存在相关,表明在SSM的组成、加工和处理条件的变化上存在明显差异。从材料表征、催化活性和理论研究的结果来看,Fe金属颗粒(包覆有碳)是HO₂产生的主要贡献者。