Suppr超能文献

利用神经网络控制透射和反射中的光散射

Light scattering control in transmission and reflection with neural networks.

作者信息

Turpin Alex, Vishniakou Ivan, Seelig Johannes D

出版信息

Opt Express. 2018 Nov 12;26(23):30911-30929. doi: 10.1364/OE.26.030911.

Abstract

Scattering often limits the controlled delivery of light in applications such as biomedical imaging, optogenetics, optical trapping, and fiber-optic communication or imaging. Such scattering can be controlled by appropriately shaping the light wavefront entering the material. Here, we develop a machine-learning approach for light control. Using pairs of binary intensity patterns and intensity measurements we train neural networks (NNs) to provide the wavefront corrections necessary to shape the beam after the scatterer. Additionally, we demonstrate that NNs can be used to find a functional relationship between transmitted and reflected speckle patterns. Establishing the validity of this relationship, we focus and scan in transmission through opaque media using reflected light. Our approach shows the versatility of NNs for light shaping, for efficiently and flexibly correcting for scattering, and in particular the feasibility of transmission control based on reflected light.

摘要

在生物医学成像、光遗传学、光镊以及光纤通信或成像等应用中,散射常常会限制光的可控传输。通过对进入材料的光波前进行适当整形,可以控制这种散射。在此,我们开发了一种用于光控制的机器学习方法。利用二元强度图案对和强度测量值,我们训练神经网络(NNs),以提供散射体之后光束整形所需的波前校正。此外,我们证明神经网络可用于找到透射和反射散斑图案之间的函数关系。在确定这种关系的有效性后,我们利用反射光在不透明介质中进行透射聚焦和扫描。我们的方法展示了神经网络在光整形方面的多功能性,能够高效灵活地校正散射,特别是基于反射光进行传输控制的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验