Suppr超能文献

基于自上下文模型的交替随机森林的基于学习的 CBCT 校正。

Learning-based CBCT correction using alternating random forest based on auto-context model.

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.

Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.

出版信息

Med Phys. 2019 Feb;46(2):601-618. doi: 10.1002/mp.13295. Epub 2018 Dec 11.

Abstract

PURPOSE

Quantitative Cone Beam CT (CBCT) imaging is increasing in demand for precise image-guided radiotherapy because it provides a foundation for advanced image-guided techniques, including accurate treatment setup, online tumor delineation, and patient dose calculation. However, CBCT is currently limited only to patient setup in the clinic because of the severe issues in its image quality. In this study, we develop a learning-based approach to improve CBCT's image quality for extended clinical applications.

MATERIALS AND METHODS

An auto-context model is integrated into a machine learning framework to iteratively generate corrected CBCT (CCBCT) with high-image quality. The first step is data preprocessing for the built training dataset, in which uninformative image regions are removed, noise is reduced, and CT and CBCT images are aligned. After a CBCT image is divided into a set of patches, the most informative and salient anatomical features are extracted to train random forests. Within each patch, alternating RF is applied to create a CCBCT patch as the output. Moreover, an iterative refinement strategy is exercised to enhance the image quality of CCBCT. Then, all the CCBCT patches are integrated to reconstruct final CCBCT images.

RESULTS

The learning-based CBCT correction algorithm was evaluated using the leave-one-out cross-validation method applied on a cohort of 12 patients' brain data and 14 patients' pelvis data. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC) indexes, and spatial nonuniformity (SNU) in the selected regions of interest (ROIs) were used to quantify the proposed algorithm's correction accuracy and generat the following results: mean MAE = 12.81 ± 2.04 and 19.94 ± 5.44 HU, mean PSNR = 40.22 ± 3.70 and 31.31 ± 2.85 dB, mean NCC = 0.98 ± 0.02 and 0.95 ± 0.01, and SNU = 2.07 ± 3.36% and 2.07 ± 3.36% for brain and pelvis data.

CONCLUSION

Preliminary results demonstrated that the novel learning-based correction method can significantly improve CBCT image quality. Hence, the proposed algorithm is of great potential in improving CBCT's image quality to support its clinical utility in CBCT-guided adaptive radiotherapy.

摘要

目的

定量锥形束 CT(CBCT)成像因其为先进的图像引导技术提供了基础,包括精确的治疗设置、在线肿瘤勾画和患者剂量计算,因此在精确图像引导放射治疗中的需求日益增加。然而,由于其图像质量存在严重问题,CBCT 目前仅局限于临床患者设置。在这项研究中,我们开发了一种基于学习的方法来提高 CBCT 的图像质量,以扩展其临床应用。

材料与方法

将自上下文模型集成到机器学习框架中,以迭代方式生成高质量的校正 CBCT(CCBCT)。第一步是为构建的训练数据集进行数据预处理,在此过程中,去除无信息的图像区域、降低噪声并对齐 CT 和 CBCT 图像。将 CBCT 图像分割成一组贴片后,提取最具信息性和显著性的解剖特征来训练随机森林。在每个贴片内,交替应用 RF 以创建 CCBCT 贴片作为输出。此外,还采用迭代细化策略来增强 CCBCT 的图像质量。然后,将所有 CCBCT 贴片集成以重建最终的 CCBCT 图像。

结果

使用 12 名脑患者数据和 14 名骨盆患者数据的留一法交叉验证方法评估基于学习的 CBCT 校正算法。所选感兴趣区域(ROI)的平均绝对误差(MAE)、峰值信噪比(PSNR)、归一化互相关(NCC)指数和空间不均匀性(SNU)用于量化该算法的校正准确性,得到以下结果:脑和骨盆数据的平均 MAE 分别为 12.81±2.04 和 19.94±5.44HU,平均 PSNR 分别为 40.22±3.70 和 31.31±2.85dB,平均 NCC 分别为 0.98±0.02 和 0.95±0.01,SNU 分别为 2.07±3.36%和 2.07±3.36%。

结论

初步结果表明,新的基于学习的校正方法可以显著提高 CBCT 图像质量。因此,该算法在提高 CBCT 图像质量以支持其在 CBCT 引导自适应放疗中的临床应用方面具有很大的潜力。

相似文献

1
Learning-based CBCT correction using alternating random forest based on auto-context model.
Med Phys. 2019 Feb;46(2):601-618. doi: 10.1002/mp.13295. Epub 2018 Dec 11.
2
Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography.
Med Phys. 2019 Sep;46(9):3998-4009. doi: 10.1002/mp.13656. Epub 2019 Jul 17.
3
Dosimetric study on learning-based cone-beam CT correction in adaptive radiation therapy.
Med Dosim. 2019;44(4):e71-e79. doi: 10.1016/j.meddos.2019.03.001. Epub 2019 Apr 1.
4
Improving Image Quality of Cone-Beam CT Using Alternating Regression Forest.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10573. doi: 10.1117/12.2292886. Epub 2018 Mar 9.
5
An unsupervised dual contrastive learning framework for scatter correction in cone-beam CT image.
Comput Biol Med. 2023 Oct;165:107377. doi: 10.1016/j.compbiomed.2023.107377. Epub 2023 Aug 15.
8
CBCT-Based synthetic CT image generation using conditional denoising diffusion probabilistic model.
Med Phys. 2024 Mar;51(3):1847-1859. doi: 10.1002/mp.16704. Epub 2023 Aug 30.
9
Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy.
Med Phys. 2023 Feb;50(2):879-893. doi: 10.1002/mp.16017. Epub 2022 Oct 18.

引用本文的文献

1
PE-CycleGAN network based CBCT-sCT generation for nasopharyngeal carsinoma adaptive radiotherapy.
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Jan 20;45(1):179-186. doi: 10.12122/j.issn.1673-4254.2025.01.21.
4
Synthetic CT generation based on CBCT using improved vision transformer CycleGAN.
Sci Rep. 2024 May 20;14(1):11455. doi: 10.1038/s41598-024-61492-7.
5
Improving performance of medical image alignment through super-resolution.
Biomed Eng Lett. 2023 Feb 18;13(3):397-406. doi: 10.1007/s13534-023-00268-w. eCollection 2023 Aug.
8
CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation.
Quant Imaging Med Surg. 2021 Dec;11(12):4820-4834. doi: 10.21037/qims-20-1056.
9
Deep learning-based thoracic CBCT correction with histogram matching.
Biomed Phys Eng Express. 2021 Oct 29;7(6). doi: 10.1088/2057-1976/ac3055.
10

本文引用的文献

1
Improving Image Quality of Cone-Beam CT Using Alternating Regression Forest.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10573. doi: 10.1117/12.2292886. Epub 2018 Mar 9.
2
Magnetic resonance imaging-based pseudo computed tomography using anatomic signature and joint dictionary learning.
J Med Imaging (Bellingham). 2018 Jul;5(3):034001. doi: 10.1117/1.JMI.5.3.034001. Epub 2018 Aug 24.
6
Volumetric medical image compression using 3D listless embedded block partitioning.
Springerplus. 2016 Dec 20;5(1):2100. doi: 10.1186/s40064-016-3784-y. eCollection 2016.
7
Image-domain shading correction for cone-beam CT without prior patient information.
J Appl Clin Med Phys. 2015 Nov 8;16(6):65-75. doi: 10.1120/jacmp.v16i6.5424.
9
Fast Patch-Based Pseudo-CT Synthesis from T1-Weighted MR Images for PET/MR Attenuation Correction in Brain Studies.
J Nucl Med. 2016 Jan;57(1):136-43. doi: 10.2967/jnumed.115.156299. Epub 2015 Oct 22.
10
Estimating CT Image From MRI Data Using Structured Random Forest and Auto-Context Model.
IEEE Trans Med Imaging. 2016 Jan;35(1):174-83. doi: 10.1109/TMI.2015.2461533. Epub 2015 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验