Suppr超能文献

基于深度学习的胸 CT 校正与直方图匹配。

Deep learning-based thoracic CBCT correction with histogram matching.

机构信息

Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States of America.

出版信息

Biomed Phys Eng Express. 2021 Oct 29;7(6). doi: 10.1088/2057-1976/ac3055.

Abstract

Kilovoltage cone-beam computed tomography (CBCT)-based image-guided radiation therapy (IGRT) is used for daily delivery of radiation therapy, especially for stereotactic body radiation therapy (SBRT), which imposes particularly high demands for setup accuracy. The clinical applications of CBCTs are constrained, however, by poor soft tissue contrast, image artifacts, and instability of Hounsfield unit (HU) values. Here, we propose a new deep learning-based method to generate synthetic CTs (sCT) from thoracic CBCTs. A deep-learning model which integrates histogram matching (HM) into a cycle-consistent adversarial network (Cycle-GAN) framework, called HM-Cycle-GAN, was trained to learn mapping between thoracic CBCTs and paired planning CTs. Perceptual supervision was adopted to minimize blurring of tissue interfaces. An informative maximizing loss was calculated by feeding CBCT into the HM-Cycle-GAN to evaluate the image histogram matching between the planning CTs and the sCTs. The proposed algorithm was evaluated using data from 20 SBRT patients who each received 5 fractions and therefore 5 thoracic CBCTs. To reduce the effect of anatomy mismatch, original CBCT images were pre-processed via deformable image registrations with the planning CT before being used in model training and result assessment. We used planning CTs as ground truth for the derived sCTs from the correspondent co-registered CBCTs. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC) indices were adapted as evaluation metrics of the proposed algorithm. Assessments were done using Cycle-GAN as the benchmark. The average MAE, PSNR, and NCC of the sCTs generated by our method were 66.2 HU, 30.3 dB, and 0.95, respectively, over all CBCT fractions. Superior image quality and reduced noise and artifact severity were seen using the proposed method compared to the results from the standard Cycle-GAN method. Our method could therefore improve the accuracy of IGRT and corrected CBCTs could help improve online adaptive RT by offering better contouring accuracy and dose calculation.

摘要

千伏锥形束计算机断层扫描(CBCT)基于图像引导的放射治疗(IGRT)用于放射治疗的日常递送,特别是立体定向体放射治疗(SBRT),其对设置精度要求特别高。然而,CBCT 的临床应用受到软组织对比度差、图像伪影和亨氏单位(HU)值不稳定的限制。在这里,我们提出了一种新的基于深度学习的方法,用于从胸部 CBCT 生成合成 CT(sCT)。一种将直方图匹配(HM)集成到循环一致对抗网络(Cycle-GAN)框架中的深度学习模型,称为 HM-Cycle-GAN,被训练来学习胸部 CBCT 与配对计划 CT 之间的映射。采用感知监督来最小化组织界面的模糊。通过将 CBCT 输入到 HM-Cycle-GAN 中,计算出一个信息量最大化的损失,以评估计划 CT 和 sCT 之间的图像直方图匹配。该算法使用来自 20 名接受 5 个分次治疗的 SBRT 患者的数据进行评估,因此每个患者接受了 5 次胸部 CBCT。为了减少解剖结构不匹配的影响,在使用模型训练和结果评估之前,通过与计划 CT 进行变形图像配准对原始 CBCT 图像进行预处理。我们使用计划 CT 作为对应配准 CBCT 衍生的 sCT 的真实值。平均绝对误差(MAE)、峰值信噪比(PSNR)和归一化互相关(NCC)指数被用作评估该算法的指标。使用 Cycle-GAN 作为基准进行评估。使用我们的方法生成的 sCT 的平均 MAE、PSNR 和 NCC 分别为 66.2 HU、30.3 dB 和 0.95,所有 CBCT 分次均如此。与标准 Cycle-GAN 方法相比,使用该方法可获得更好的图像质量,并降低噪声和伪影的严重程度。因此,该方法可以提高 IGRT 的准确性,并且校正后的 CBCT 可以通过提供更好的轮廓准确性和剂量计算来帮助改善在线自适应 RT。

相似文献

1
Deep learning-based thoracic CBCT correction with histogram matching.
Biomed Phys Eng Express. 2021 Oct 29;7(6). doi: 10.1088/2057-1976/ac3055.
2
Improving CBCT quality to CT level using deep learning with generative adversarial network.
Med Phys. 2021 Jun;48(6):2816-2826. doi: 10.1002/mp.14624. Epub 2021 May 14.
3
Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography.
Med Phys. 2019 Sep;46(9):3998-4009. doi: 10.1002/mp.13656. Epub 2019 Jul 17.
4
CBCT-Based synthetic CT image generation using conditional denoising diffusion probabilistic model.
Med Phys. 2024 Mar;51(3):1847-1859. doi: 10.1002/mp.16704. Epub 2023 Aug 30.
5
Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy.
Med Phys. 2023 Feb;50(2):879-893. doi: 10.1002/mp.16017. Epub 2022 Oct 18.
9
CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy.
Med Phys. 2020 Jun;47(6):2472-2483. doi: 10.1002/mp.14121. Epub 2020 Mar 28.
10
Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy.
Med Phys. 2020 Sep;47(9):4416-4427. doi: 10.1002/mp.14347. Epub 2020 Jul 27.

引用本文的文献

1
T1-contrast enhanced MRI generation from multi-parametric MRI for glioma patients with latent tumor conditioning.
Med Phys. 2025 Apr;52(4):2064-2073. doi: 10.1002/mp.17600. Epub 2024 Dec 23.
4
CBCT-based synthetic CT image generation using a diffusion model for CBCT-guided lung radiotherapy.
Med Phys. 2024 Nov;51(11):8168-8178. doi: 10.1002/mp.17328. Epub 2024 Aug 1.
6
Accuracy and Feasibility of Synthetic CT for Lung Adaptive Radiotherapy: A Phantom Study.
Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231218161. doi: 10.1177/15330338231218161.
10
Generating missing patient anatomy from partially acquired cone-beam computed tomography images using deep learning: a proof of concept.
Phys Eng Sci Med. 2023 Sep;46(3):1321-1330. doi: 10.1007/s13246-023-01302-y. Epub 2023 Jul 18.

本文引用的文献

1
A single neural network for cone-beam computed tomography-based radiotherapy of head-and-neck, lung and breast cancer.
Phys Imaging Radiat Oncol. 2020 May 25;14:24-31. doi: 10.1016/j.phro.2020.04.002. eCollection 2020 Apr.
3
CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy.
Med Phys. 2020 Jun;47(6):2472-2483. doi: 10.1002/mp.14121. Epub 2020 Mar 28.
4
Synthetic CT generation from CBCT images via deep learning.
Med Phys. 2020 Mar;47(3):1115-1125. doi: 10.1002/mp.13978. Epub 2020 Jan 13.
5
Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography.
Med Phys. 2019 Sep;46(9):3998-4009. doi: 10.1002/mp.13656. Epub 2019 Jul 17.
6
Dosimetric study on learning-based cone-beam CT correction in adaptive radiation therapy.
Med Dosim. 2019;44(4):e71-e79. doi: 10.1016/j.meddos.2019.03.001. Epub 2019 Apr 1.
8
Learning-based CBCT correction using alternating random forest based on auto-context model.
Med Phys. 2019 Feb;46(2):601-618. doi: 10.1002/mp.13295. Epub 2018 Dec 11.
9
ScatterNet: A convolutional neural network for cone-beam CT intensity correction.
Med Phys. 2018 Nov;45(11):4916-4926. doi: 10.1002/mp.13175. Epub 2018 Oct 8.
10
Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics.
Cancer. 2018 Jul 1;124(13):2785-2800. doi: 10.1002/cncr.31551. Epub 2018 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验