Chen Ying, Vicente Nataly, Pham Tung, Mulchandani Ashok
Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA.
Center for Environmental Research and Technology (CE-CERT), University of California Riverside, Riverside, CA 92507, USA.
Biosensors (Basel). 2025 Jun 10;15(6):373. doi: 10.3390/bios15060373.
Our study develops two configurations of MoS and graphene heterostructures-MoS on graphene (MG) and graphene on MoS (GM)-to investigate biomolecule sensing in field-effect transistor (FET) biosensors. Leveraging MoS and graphene's distinctive properties, we employ specialized functionalization techniques for each configuration: graphene with MoS on top uses a silane-based method with triethoxysilylbutyraldehyde (TESBA), and MoS with graphene on top utilizes 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE). Our research explores the application of MoS-Graphene heterostructures in biosensors, emphasizing the roles of synthesis, fabrication, and material functionalization in optimizing sensor performance. Through our experimental investigations, we have observed that doping MoS and graphene leads to noticeable changes in the Raman spectrum and shifts in transfer curves. Techniques such as XPS, Raman, and AFM have successfully confirmed the biofunctionalization. Transfer curves were instrumental in characterizing the biosensing performance, revealing that GM configurations exhibit higher sensitivity and a lower limit of detection (LOD) compared to MG configurations. We demonstrate that GM heterostructures offer superior sensitivity and specificity in biosensing, highlighting their significant potential to advance biosensor technologies. This research contributes to the field by detailing the creation process of vertical MoS-graphene heterostructures and evaluating their effectiveness in accurate biomolecule detection, advancing biosensing technology.
我们的研究开发了两种二硫化钼(MoS)与石墨烯异质结构的配置——石墨烯上的MoS(MG)和MoS上的石墨烯(GM)——以研究场效应晶体管(FET)生物传感器中的生物分子传感。利用MoS和石墨烯的独特性质,我们针对每种配置采用了专门的功能化技术:顶部为MoS的石墨烯使用基于硅烷的方法,采用三乙氧基硅基丁醛(TESBA),顶部为石墨烯的MoS则利用1-芘丁酸N-羟基琥珀酰亚胺酯(PBASE)。我们的研究探索了MoS-石墨烯异质结构在生物传感器中的应用,强调了合成、制造和材料功能化在优化传感器性能方面的作用。通过我们的实验研究,我们观察到对MoS和石墨烯进行掺杂会导致拉曼光谱出现显著变化以及转移曲线发生偏移。X射线光电子能谱(XPS)、拉曼光谱和原子力显微镜(AFM)等技术已成功证实了生物功能化。转移曲线有助于表征生物传感性能,结果表明与MG配置相比,GM配置表现出更高的灵敏度和更低的检测限(LOD)。我们证明GM异质结构在生物传感中具有卓越的灵敏度和特异性,突出了它们在推动生物传感器技术发展方面的巨大潜力。这项研究通过详细阐述垂直MoS-石墨烯异质结构的创建过程并评估它们在精确生物分子检测中的有效性,为该领域做出了贡献,推动了生物传感技术的发展。