Suppr超能文献

用于治疗牙周骨下袋缺损的自体血小板浓缩物

Autologous platelet concentrates for treating periodontal infrabony defects.

作者信息

Del Fabbro Massimo, Karanxha Lorena, Panda Saurav, Bucchi Cristina, Nadathur Doraiswamy Jayakumar, Sankari Malaiappan, Ramamoorthi Surendar, Varghese Sheeja, Taschieri Silvio

机构信息

Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.

出版信息

Cochrane Database Syst Rev. 2018 Nov 26;11(11):CD011423. doi: 10.1002/14651858.CD011423.pub2.

Abstract

BACKGROUND

Periodontal disease is a condition affecting tooth-supporting tissues (gingiva, alveolar bone, periodontal ligament, and cementum), with the potential of introducing severe adverse effects on oral health. It has a complex pathogenesis which involves the combination of specific micro-organisms and a predisposing host response. Infrabony defects are one of the morphological types of alveolar bone defects that can be observed during periodontitis. Recent approaches for the treatment of infrabony defects, combine advanced surgical techniques with platelet-derived growth factors. These are naturally synthesized polypeptides, acting as mediators for various cellular activities during wound healing. It is believed that the adjunctive use of autologous platelet concentrates to periodontal surgical procedures produces a better and more predictable outcome for the treatment of infrabony defects.

OBJECTIVES

To assess the effects of autologous platelet concentrates (APC) used as an adjunct to periodontal surgical therapies (open flap debridement (OFD), OFD combined with bone grafting (BG), guided tissue regeneration (GTR), OFD combined with enamel matrix derivative (EMD)) for the treatment of infrabony defects.

SEARCH METHODS

Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 27 February 2018); the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 1) in the Cochrane Library (searched 27 February 2018); MEDLINE Ovid (1946 to 27 February 2018); Embase Ovid (1980 to 27 February 2018); and LILACS BIREME Virtual Health Library (from 1982 to 27 February 2018). The US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials on 27 February 2018. No restrictions were placed on the language or date of publication when searching the electronic databases.

SELECTION CRITERIA

We included randomised controlled trials (RCTs) of both parallel and split-mouth design, involving patients with infrabony defects requiring surgical treatment. Studies had to compare treatment outcomes of a specific surgical technique combined with APC, with the same technique when used alone.

DATA COLLECTION AND ANALYSIS

Two review authors independently conducted data extraction and risk of bias assessment, and analysed data following Cochrane methods. The primary outcomes assessed were: change in probing pocket depth (PD), change in clinical attachment level (CAL), and change in radiographic bone defect filling (RBF). We organised all data in four groups, each comparing a specific surgical technique when applied with the adjunct of APC or alone: 1. APC + OFD versus OFD, 2. APC + OFD + BG versus OFD + BG, 3. APC + GTR versus GTR, and 4. APC + EMD versus EMD.

MAIN RESULTS

We included 38 RCTs. Twenty-two had a split-mouth design, and 16 had a parallel design. The overall evaluated data included 1402 defects. Two studies were at unclear overall risk of bias, while the remaining 36 studies had a high overall risk of bias.1. APC + OFD versus OFD alone Twelve studies were included in this comparison, with a total of 510 infrabony defects. There is evidence of an advantage in using APC globally from split-mouth and parallel studies for all three primary outcomes: PD (mean difference (MD) 1.29 mm, 95% confidence interval (CI) 1.00 to 1.58 mm; P < 0.001; 12 studies; 510 defects; very low-quality evidence); CAL (MD 1.47 mm, 95% CI 1.11 to 1.82 mm; P < 0.001; 12 studies; 510 defects; very low-quality evidence); and RBF (MD 34.26%, 95% CI 30.07% to 38.46%; P < 0.001; 9 studies; 401 defects; very low-quality evidence).2. APC + OFD + BG versus OFD + BG Seventeen studies were included in this comparison, with a total of 569 infrabony defects. Considering all follow-ups, as well as 3 to 6 months and 9 to 12 months, there is evidence of an advantage in using APC from both split-mouth and parallel studies for all three primary outcomes: PD (MD 0.54 mm, 95% CI 0.33 to 0.75 mm; P < 0.001; 17 studies; 569 defects; very low-quality evidence); CAL (MD 0.72 mm, 95% CI 0.43 to 1.00 mm; P < 0.001; 17 studies; 569 defects; very low-quality evidence); and RBF (MD 8.10%, 95% CI 5.26% to 10.94%; P < 0.001; 11 studies; 420 defects; very low-quality evidence).3. APC + GTR versus GTR alone Seven studies were included in this comparison, with a total of 248 infrabony defects. Considering all follow-ups, there is probably a benefit for APC for both PD (MD 0.92 mm, 95% CI -0.02 to 1.86 mm; P = 0.05; very low-quality evidence) and CAL (MD 0.42 mm, 95% CI -0.02 to 0.86 mm; P = 0.06; very low-quality evidence). However, given the wide confidence intervals, there might be a possibility of a slight benefit for the control. When considering a 3 to 6 months and a 9 to 12 months follow-up there were no benefits evidenced, except for CAL at 3 to 6 months (MD 0.54 mm, 95% CI 0.18 to 0.89 mm; P = 0.003; 3 studies; 134 defects). No RBF data were available.4. APC + EMD versus EMDTwo studies were included in this comparison, with a total of 75 infrabony defects. There is insufficient evidence of an overall advantage of using APC for all three primary outcomes: PD (MD 0.13 mm, 95% CI -0.05 to 0.30 mm; P = 0.16; 2 studies; 75 defects; very low-quality evidence), CAL (MD 0.10 mm, 95% CI -0.13 to 0.32 mm; P = 0.40; 2 studies; 75 defects; very low-quality evidence), and RBF (MD -0.60%, 95% CI -6.21% to 5.01%; P = 0.83; 1 study; 49 defects; very low-quality evidence).All studies in all groups reported a survival rate of 100% for the treated teeth. No complete pocket closure was reported. No quantitative analysis regarding patients' quality of life was possible.

AUTHORS' CONCLUSIONS: There is very low-quality evidence that the adjunct of APC to OFD or OFD + BG when treating infrabony defects may improve probing pocket depth, clinical attachment level, and radiographic bone defect filling. For GTR or EMD, insufficient evidence of an advantage in using APC was observed.

摘要

背景

牙周病是一种影响牙齿支持组织(牙龈、牙槽骨、牙周韧带和牙骨质)的疾病,可能对口腔健康产生严重不良影响。其发病机制复杂,涉及特定微生物与易感宿主反应的结合。骨下袋缺损是牙周炎期间可观察到的牙槽骨缺损的形态类型之一。近期骨下袋缺损的治疗方法是将先进的外科技术与血小板衍生生长因子相结合。这些是天然合成的多肽,在伤口愈合过程中作为各种细胞活动的介质。据信,在牙周手术中辅助使用自体血小板浓缩物可产生更好、更可预测的骨下袋缺损治疗效果。

目的

评估自体血小板浓缩物(APC)作为牙周手术治疗(开放瓣清创术(OFD)、OFD联合骨移植(BG)、引导组织再生(GTR)、OFD联合釉基质衍生物(EMD))辅助手段治疗骨下袋缺损的效果。

检索方法

Cochrane口腔健康信息专家检索了以下数据库:Cochrane口腔健康试验注册库(截至2018年2月27日);Cochrane图书馆中的Cochrane对照试验中心注册库(CENTRAL;2018年第1期,检索于2018年2月27日);MEDLINE Ovid(1946年至2018年2月27日);Embase Ovid(1980年至2018年2月27日);以及LILACS BIREME虚拟健康图书馆(1982年至2018年2月27日)。2018年2月27日检索了美国国立卫生研究院正在进行的试验注册库(ClinicalTrials.gov)和世界卫生组织国际临床试验注册平台。检索电子数据库时对语言或出版日期没有限制。

入选标准

我们纳入了平行设计和分口设计的随机对照试验(RCT),研究对象为需要手术治疗的骨下袋缺损患者。研究必须比较特定手术技术联合APC与单独使用相同技术的治疗效果。

数据收集与分析

两位综述作者独立进行数据提取和偏倚风险评估,并按照Cochrane方法分析数据。评估的主要结局包括:探诊深度(PD)变化、临床附着水平(CAL)变化和影像学骨缺损填充(RBF)变化。我们将所有数据分为四组,每组比较特定手术技术在联合APC或单独使用时的情况:1. APC + OFD与OFD对比;2. APC + OFD + BG与OFD + BG对比;3. APC + GTR与GTR对比;4. APC + EMD与EMD对比。

主要结果

我们纳入了38项RCT。22项为分口设计,16项为平行设计。总体评估数据包括1402处缺损。两项研究的总体偏倚风险不明确,其余36项研究的总体偏倚风险较高。1. APC + OFD与单独的OFD对比 本对比纳入了12项研究,共510处骨下袋缺损。分口研究和平行研究均有证据表明,在所有三项主要结局中,全球范围内使用APC具有优势:PD(平均差(MD)1.29mm,95%置信区间(CI)1.00至1.58mm;P < 0.001;12项研究;510处缺损;极低质量证据);CAL(MD 1.47mm,95%CI 1.11至1.82mm;P < 0.001;12项研究;510处缺损;极低质量证据);RBF(MD 34.26%,95%CI 30.07%至38.46%;P < 0.001;9项研究;401处缺损;极低质量证据)。2. APC + OFD + BG与OFD + BG对比 本对比纳入了17项研究,共569处骨下袋缺损。考虑所有随访以及3至6个月和9至12个月的随访,分口研究和平行研究均有证据表明,在所有三项主要结局中,使用APC具有优势:PD(MD 0.54mm,95%CI 0.33至0.75mm;P < 0.001;17项研究;569处缺损;极低质量证据);CAL(MD 0.72mm,95%CI 0.43至1.00mm;P < 0.001;17项研究;569处缺损;极低质量证据);RBF(MD 8.10%,95%CI 5.26%至10.94%;P < 0.001;11项研究;420处缺损;极低质量证据)。3. APC + GTR与单独的GTR对比 本对比纳入了7项研究,共248处骨下袋缺损。考虑所有随访,APC在PD(MD 0.92mm,95%CI -0.02至1.86mm;P = 0.05;极低质量证据)和CAL(MD 0.42mm,95%CI -0.02至0.86mm;P = 0.06;极低质量证据)方面可能有益。然而,鉴于置信区间较宽,对照组可能有轻微益处。考虑3至6个月和9至12个月的随访时,除了3至6个月时的CAL(MD 0.54mm,95%CI 0.18至0.89mm;P = 0.003;3项研究;134处缺损)外,没有证据表明有其他益处。没有RBF数据。4. APC + EMD与EMD对比 本对比纳入了2项研究,共75处骨下袋缺损。在所有三项主要结局中,没有足够证据表明使用APC具有总体优势:PD(MD 0.13mm,95%CI -0.05至0.30mm;P = 0.16;2项研究;75处缺损;极低质量证据),CAL(MD 0.10mm,95%CI -0.13至0.32mm;P = 0.40;2项研究;75处缺损;极低质量证据),RBF(MD -0.60%,95%CI -6.21%至5.01%;P = 0.83;1项研究;49处缺损;极低质量证据)。所有组中的所有研究均报告治疗牙齿的存活率为100%。没有关于完全袋闭合的报告。无法对患者的生活质量进行定量分析。

作者结论

极低质量证据表明,在治疗骨下袋缺损时,APC辅助OFD或OFD + BG可能改善探诊深度、临床附着水平和影像学骨缺损填充。对于GTR或EMD,没有观察到使用APC具有优势的充分证据。

相似文献

1
Autologous platelet concentrates for treating periodontal infrabony defects.用于治疗牙周骨下袋缺损的自体血小板浓缩物
Cochrane Database Syst Rev. 2018 Nov 26;11(11):CD011423. doi: 10.1002/14651858.CD011423.pub2.
7
Guided tissue regeneration for periodontal infra-bony defects.牙周骨下袋缺损的引导组织再生术。
Cochrane Database Syst Rev. 2006 Apr 19(2):CD001724. doi: 10.1002/14651858.CD001724.pub2.

引用本文的文献

3
Innovative biomaterials for the treatment of periodontal disease.用于治疗牙周疾病的创新生物材料。
Front Dent Med. 2023 May 30;4:1163562. doi: 10.3389/fdmed.2023.1163562. eCollection 2023.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验