鉴定乳腺癌患者的 4 个 mRNA 转移相关预后特征。

Identification of a 4-mRNA metastasis-related prognostic signature for patients with breast cancer.

机构信息

Department of Breast Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.

Department of Ultrasond, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.

出版信息

J Cell Mol Med. 2019 Feb;23(2):1439-1447. doi: 10.1111/jcmm.14049. Epub 2018 Nov 28.

Abstract

Metastasis-related mRNAs have showed great promise as prognostic biomarkers in various types of cancers. Therefore, we attempted to develop a metastasis-associated gene signature to enhance prognostic prediction of breast cancer (BC) based on gene expression profiling. We firstly screened and identified 56 differentially expressed mRNAs by analysing BC tumour tissues with and without metastasis in the discovery cohort (GSE102484, n = 683). We then found 26 of these differentially expressed genes were associated with metastasis-free survival (MFS) in the training set (GSE20685, n = 319). A metastasis-associated gene signature built using a LASSO Cox regression model, which consisted of four mRNAs, can classify patients into high- and low-risk groups in the training cohort. Patients with high-risk scores in the training cohort had shorter MFS (hazard ratio [HR] 3.89, 95% CI 2.53-5.98; P < 0.001), disease-free survival (DFS) (HR 4.69, 2.93-7.50; P < 0.001) and overall survival (HR 4.06, 2.56-6.45; P < 0.001) than patients with low-risk scores. The prognostic accuracy of mRNAs signature was validated in the two independent validation cohorts (GSE21653, n = 248; GSE31448, n = 246). We then developed a nomogram based on the mRNAs signature and clinical-related risk factors (T stage and N stage) that predicted an individual's risk of disease, which can be assessed by calibration curves. Our study demonstrated that this 4-mRNA signature might be a reliable and useful prognostic tool for DFS evaluation and will facilitate tailored therapy for BC patients at different risk of disease.

摘要

转移相关的 mRNAs 在各种类型的癌症中作为预后生物标志物显示出巨大的潜力。因此,我们试图基于基因表达谱开发一种与转移相关的基因特征,以增强对乳腺癌(BC)的预后预测。我们首先通过分析发现队列中的有转移和无转移的 BC 肿瘤组织,筛选和鉴定了 56 个差异表达的 mRNAs(GSE102484,n=683)。然后,我们在训练集中发现其中 26 个差异表达基因与无转移生存(MFS)相关(GSE20685,n=319)。使用 LASSO Cox 回归模型构建的转移相关基因特征,由 4 个 mRNAs 组成,可以将患者在训练队列中分为高风险和低风险组。在训练队列中,高风险评分的患者 MFS(风险比[HR]3.89,95%CI 2.53-5.98;P<0.001)、无病生存(DFS)(HR 4.69,2.93-7.50;P<0.001)和总生存(HR 4.06,2.56-6.45;P<0.001)均短于低风险评分的患者。该 mRNAs 特征的预后准确性在两个独立的验证队列中得到验证(GSE21653,n=248;GSE31448,n=246)。然后,我们基于 mRNAs 特征和临床相关风险因素(T 期和 N 期)开发了一个列线图,该列线图可以通过校准曲线来评估个体疾病的风险。我们的研究表明,该 4-mRNAs 特征可能是评估 DFS 的可靠且有用的预后工具,并将有助于为不同疾病风险的 BC 患者制定个体化治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c974/6349190/10f28f18febd/JCMM-23-1439-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索