Wen Yahui, Bai Junjie, Zheng Caihong, Liu Jiameng, Lin Shunguo, Han Hui, Xu Chunsen
Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
Front Oncol. 2023 Aug 4;13:1068187. doi: 10.3389/fonc.2023.1068187. eCollection 2023.
Male breast cancer (MBC) is a rare disease, accounting for <1% of all male carcinomas. Lack of prospective data, the current therapy for MBC is based on retrospective analysis or information that is extrapolated from studies of female patients. We constructed a nomogram model for predicting the overall survival (OS) of MBC patients and verify its feasibility using data from China.
Constructed a predictive model using 1224 MBC patients from the Surveillance, Epidemiology and End Results (SEER) registry between 2010 and 2015. The performance of the model was externally validated between 2002 to 2021 using 44 MBC patients from the Fujian Medical University Union Hospital. The independent prognostic factors were selected by univariate and multivariate Cox regression analyses. The nomogram was constructed to predict individual survival outcomes for MBC patients. The discriminative power, calibration, and clinical effectiveness of the nomogram were evaluated by the receiver operating characteristic (ROC) curve, and the decision curve analysis (DCA).
A total of 1224 male breast cancer patients were in the training cohort and 44 in the validation cohort. T status (<0.001), age at diagnosis (<0.001), histologic grade (=0.008), M status (<0.001), ER status (=0.001), Her2 status (=0.019), chemotherapy (=0.015) were independently associated with OS. The diagnostic performance of this model was evaluated and validated using ROC curves on the training and validation datasets. In the training cohort, the nomogram-predicted AUC value was 0.786 for 3-year OS and 0.767 for 5-year OS. In the validation cohort, the nomogram-predicted AUC value was 0.893 for 3-year OS and 0.895 for 5-year OS. Decision curve analysis demonstrated that the nomogram was more benefit than the AJCC stage.
We developed a nomogram that predicts 3-year and 5-year survival in MBC patients. Validation using bootstrap sampling revealed optimal discrimination and calibration, suggesting that the nomogram may have clinical utility. The results remain reproducible in the validation cohort which included Chinese data. The model was superior to the AJCC stage system as shown in the decision curve analysis (DCA).
男性乳腺癌(MBC)是一种罕见疾病,占所有男性癌症的比例不到1%。由于缺乏前瞻性数据,目前MBC的治疗基于回顾性分析或从女性患者研究中推断出的信息。我们构建了一个列线图模型来预测MBC患者的总生存期(OS),并使用来自中国的数据验证其可行性。
使用2010年至2015年监测、流行病学和最终结果(SEER)登记处的1224例MBC患者构建预测模型。该模型的性能在2002年至2021年期间使用福建医科大学附属协和医院的44例MBC患者进行外部验证。通过单因素和多因素Cox回归分析选择独立预后因素。构建列线图以预测MBC患者的个体生存结果。通过受试者操作特征(ROC)曲线和决策曲线分析(DCA)评估列线图的判别能力、校准和临床有效性。
训练队列中有1224例男性乳腺癌患者,验证队列中有44例。T分期(<0.001)、诊断年龄(<0.001)、组织学分级(=0.008)、M分期(<0.001)、ER状态(=0.001)、Her2状态(=0.019)、化疗(=0.015)与OS独立相关。使用训练和验证数据集上的ROC曲线评估和验证该模型的诊断性能。在训练队列中,列线图预测的3年OS的AUC值为0.786,5年OS的AUC值为0.767。在验证队列中,列线图预测的3年OS的AUC值为0.893,5年OS的AUC值为0.895。决策曲线分析表明,列线图比美国癌症联合委员会(AJCC)分期更有益。
我们开发了一种列线图,可预测MBC患者的3年和5年生存率。使用自助抽样进行的验证显示出最佳的判别能力和校准,表明该列线图可能具有临床实用性。在包括中国数据的验证队列中,结果仍然具有可重复性。如决策曲线分析(DCA)所示,该模型优于AJCC分期系统。