JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, USA.
Department of Physics, University of Colorado Boulder, Boulder, CO, USA.
Nature. 2024 Oct;634(8033):315-320. doi: 10.1038/s41586-024-07913-z. Epub 2024 Oct 9.
Many-particle entanglement is a key resource for achieving the fundamental precision limits of a quantum sensor. Optical atomic clocks, the current state of the art in frequency precision, are a rapidly emerging area of focus for entanglement-enhanced metrology. Augmenting tweezer-based clocks featuring microscopic control and detection with the high-fidelity entangling gates developed for atom-array information processing offers a promising route towards making use of highly entangled quantum states for improved optical clocks. Here we develop and use a family of multi-qubit Rydberg gates to generate Schrödinger cat states of the Greenberger-Horne-Zeilinger (GHZ) type with up to nine optical clock qubits in a programmable atom array. In an atom-laser comparison at sufficiently short dark times, we demonstrate a fractional frequency instability below the standard quantum limit (SQL) using GHZ states of up to four qubits. However, because of their reduced dynamic range, GHZ states of a single size fail to improve the achievable clock precision at the optimal dark time compared with unentangled atoms. Towards overcoming this hurdle, we simultaneously prepare a cascade of varying-size GHZ states to perform unambiguous phase estimation over an extended interval. These results demonstrate key building blocks for approaching Heisenberg-limited scaling of optical atomic clock precision.
多粒子纠缠是实现量子传感器基本精度限制的关键资源。光学原子钟是频率精度的最新技术,它是纠缠增强计量学的一个快速新兴研究领域。通过将基于镊子的时钟的微观控制和检测与为原子阵列信息处理开发的高保真纠缠门相结合,为利用高度纠缠的量子态来提高光学时钟提供了一条很有前途的途径。在这里,我们开发并使用了一系列多量子比特里德堡门,在可编程原子阵列中生成了多达九个光学时钟量子比特的薛定谔猫态,即格林伯格-霍恩-泽林格(GHZ)态。在足够短的暗时间的原子-激光比较中,我们使用多达四个量子比特的 GHZ 态展示了低于标准量子极限(SQL)的分数频率不稳定性。然而,由于其动态范围减小,与未纠缠的原子相比,单个大小的 GHZ 态在最佳暗时间无法提高可实现的时钟精度。为了克服这一障碍,我们同时准备了一系列不同大小的 GHZ 态,以便在扩展的时间间隔内执行明确的相位估计。这些结果展示了接近光学原子钟精度的海森堡极限扩展的关键构建模块。