Stephenson Scott R, Wang Wenshan, Zender Charles S, Wang Hailong, Davis Steven J, Rasch Philip J
Department of Geography University of Connecticut Storrs CT USA.
Department of Earth System Science University of California Irvine CA USA.
Geophys Res Lett. 2018 Sep 28;45(18):9898-9908. doi: 10.1029/2018GL078969.
As global temperatures increase, sea ice loss will increasingly enable commercial shipping traffic to cross the Arctic Ocean, where the ships' gas and particulate emissions may have strong regional effects. Here we investigate impacts of shipping emissions on Arctic climate using a fully coupled Earth system model (CESM 1.2.2) and a suite of newly developed projections of 21st-century trans-Arctic shipping emissions. We find that trans-Arctic shipping will reduce Arctic warming by nearly 1 °C by 2099, due to sulfate-driven liquid water cloud formation. Cloud fraction and liquid water path exhibit significant positive trends, cooling the lower atmosphere and surface. Positive feedbacks from sea ice growth-induced albedo increases and decreased downwelling longwave radiation due to reduced water vapor content amplify the cooling relative to the shipping-free Arctic. Our findings thus point to the complexity in Arctic climate responses to increased shipping traffic, justifying further study and policy considerations as trade routes open.
随着全球气温上升,海冰流失将越来越多地促使商业航运穿越北冰洋,而船舶的气体和颗粒物排放可能会产生强烈的区域影响。在此,我们使用一个完全耦合的地球系统模型(CESM 1.2.2)以及一系列新开发的21世纪跨北极航运排放预测,研究航运排放对北极气候的影响。我们发现,到2099年,跨北极航运将使北极变暖减少近1摄氏度,这是由于硫酸盐驱动液态水云的形成。云量和液态水路径呈现出显著的正向趋势,使低层大气和地表降温。海冰增长引起的反照率增加以及由于水汽含量减少导致的下行长波辐射减少所产生的正反馈,相对于无航运的北极而言,放大了降温效果。因此,我们的研究结果表明北极气候对航运交通增加的响应具有复杂性,这证明在贸易航线开通时进行进一步研究和政策考量是合理的。