Suppr超能文献

通过深度学习对周围有髓神经纤维进行形态计量分析。

Morphometric analysis of peripheral myelinated nerve fibers through deep learning.

机构信息

Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan.

John D. Dingell VA Medical Center, Detroit, Michigan.

出版信息

J Peripher Nerv Syst. 2019 Mar;24(1):87-93. doi: 10.1111/jns.12293. Epub 2018 Dec 11.

Abstract

Irrespective of initial causes of neurological diseases, these disorders usually exhibit two key pathological changes-axonal loss or demyelination or a mixture of the two. Therefore, vigorous quantification of myelin and axons is essential in studying these diseases. However, the process of quantification has been labor intensive and time-consuming because of the requisite manual segmentation of myelin and axons from microscopic nerve images. As a part of AI development, deep learning has been utilized to automate certain tasks, such as image analysis. This study describes the development of a convolutional neural network (CNN)-based approach to segment images of mouse nerve cross sections. We adapted the U-Net architecture and used manually-produced segmentation data accumulated over many years in our lab for training. These images ranged from normal nerves to those afflicted by severe myelin and axon pathologies; thus, maximizing the trained model's ability to recognize atypical myelin structures. Morphometric data produced by applying the trained model to additional images were then compared to manually obtained morphometrics. The former effectively shortened the time consumption in the morphometric analysis with excellent accuracy in axonal density and g-ratio. However, we were not able to completely eliminate manual refinement of the segmentation product. We also observed small variations in axon diameter and myelin thickness within 9.5%. Nevertheless, we learned alternative ways to improve accuracy through the study. Overall, greatly increased efficiency in the CNN-based approach out-weighs minor limitations that will be addressed in future studies, thus justifying our confidence in its prospects. Note: All the relevant code is freely available at https://neurology.med.wayne.edu/drli-datashairing.

摘要

无论神经疾病的初始原因如何,这些疾病通常表现出两种关键的病理变化——轴突损失或脱髓鞘,或两者的混合。因此,在研究这些疾病时,强烈需要对髓鞘和轴突进行有力的量化。然而,由于必须从微观神经图像中手动分割髓鞘和轴突,因此量化过程既费力又耗时。作为人工智能开发的一部分,深度学习已被用于自动化某些任务,例如图像分析。本研究描述了一种基于卷积神经网络(CNN)的方法,用于分割小鼠神经切片的图像。我们改编了 U-Net 架构,并使用我们实验室多年来积累的手动制作的分割数据进行训练。这些图像范围从正常神经到严重的髓鞘和轴突病变的神经;因此,最大限度地提高了训练模型识别非典型髓鞘结构的能力。然后将应用训练模型获得的形态计量数据与手动获得的形态计量数据进行比较。前者通过出色的轴突密度和 g-ratio 准确性有效地缩短了形态计量分析的时间消耗。然而,我们无法完全消除分割产物的手动细化。我们还观察到 9.5%内的轴突直径和髓鞘厚度的微小变化。尽管如此,我们通过研究学习了提高准确性的替代方法。总体而言,基于 CNN 的方法的效率大大提高,克服了未来研究中需要解决的次要限制,因此我们对其前景充满信心。注:所有相关代码都可在 https://neurology.med.wayne.edu/drli-datashairing 免费获得。

相似文献

1
Morphometric analysis of peripheral myelinated nerve fibers through deep learning.
J Peripher Nerv Syst. 2019 Mar;24(1):87-93. doi: 10.1111/jns.12293. Epub 2018 Dec 11.
2
Identification and segmentation of myelinated nerve fibers in a cross-sectional optical microscopic image using a deep learning model.
J Neurosci Methods. 2017 Nov 1;291:141-149. doi: 10.1016/j.jneumeth.2017.08.014. Epub 2017 Aug 31.
3
Rapid, automated nerve histomorphometry through open-source artificial intelligence.
Sci Rep. 2022 Apr 8;12(1):5975. doi: 10.1038/s41598-022-10066-6.
5
Automated pipeline for nerve fiber selection and g-ratio calculation in optical microscopy: exploring staining protocol variations.
Front Neuroanat. 2023 Nov 22;17:1260186. doi: 10.3389/fnana.2023.1260186. eCollection 2023.
6
Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems.
Artif Intell Med. 2012 Mar;54(3):189-200. doi: 10.1016/j.artmed.2011.11.008. Epub 2012 Jan 11.
9
Binary imaging analysis for comprehensive quantitative histomorphometry of peripheral nerve.
J Neurosci Methods. 2007 Oct 15;166(1):116-24. doi: 10.1016/j.jneumeth.2007.06.018. Epub 2007 Jun 30.
10
Morphometric and freeze-fracture studies on peripheral nerve in shiverer mice.
J Comp Neurol. 1989 Aug 15;286(3):337-44. doi: 10.1002/cne.902860304.

引用本文的文献

4
PAK2 is necessary for myelination in the peripheral nervous system.
Brain. 2024 May 3;147(5):1809-1821. doi: 10.1093/brain/awad413.
5
AimSeg: A machine-learning-aided tool for axon, inner tongue and myelin segmentation.
PLoS Comput Biol. 2023 Nov 17;19(11):e1010845. doi: 10.1371/journal.pcbi.1010845. eCollection 2023 Nov.
6
C698R mutation in Lrsam1 gene impairs nerve regeneration in a CMT2P mouse model.
Sci Rep. 2022 Jul 16;12(1):12160. doi: 10.1038/s41598-022-15902-3.
7
Rapid, automated nerve histomorphometry through open-source artificial intelligence.
Sci Rep. 2022 Apr 8;12(1):5975. doi: 10.1038/s41598-022-10066-6.
8
High-throughput segmentation of unmyelinated axons by deep learning.
Sci Rep. 2022 Jan 24;12(1):1198. doi: 10.1038/s41598-022-04854-3.
9
A simple and robust method for automating analysis of naïve and regenerating peripheral nerves.
PLoS One. 2021 Jul 7;16(7):e0248323. doi: 10.1371/journal.pone.0248323. eCollection 2021.
10
Pmp22 super-enhancer deletion causes tomacula formation and conduction block in peripheral nerves.
Hum Mol Genet. 2020 Jun 27;29(10):1689-1699. doi: 10.1093/hmg/ddaa082.

本文引用的文献

2
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
3
AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.
Front Neuroinform. 2016 Aug 19;10:37. doi: 10.3389/fninf.2016.00037. eCollection 2016.
4
Abnormal junctions and permeability of myelin in PMP22-deficient nerves.
Ann Neurol. 2014 Feb;75(2):255-65. doi: 10.1002/ana.24086. Epub 2014 Feb 20.
5
Conduction block in PMP22 deficiency.
J Neurosci. 2010 Jan 13;30(2):600-8. doi: 10.1523/JNEUROSCI.4264-09.2010.
6
Statistical validation of image segmentation quality based on a spatial overlap index.
Acad Radiol. 2004 Feb;11(2):178-89. doi: 10.1016/s1076-6332(03)00671-8.
7
Neurological dysfunction and axonal degeneration in Charcot-Marie-Tooth disease type 1A.
Brain. 2000 Jul;123 ( Pt 7):1516-27. doi: 10.1093/brain/123.7.1516.
8
Axonal transection in the lesions of multiple sclerosis.
N Engl J Med. 1998 Jan 29;338(5):278-85. doi: 10.1056/NEJM199801293380502.
9
Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice.
Nat Genet. 1995 Nov;11(3):274-80. doi: 10.1038/ng1195-274.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验