Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
Cereb Cortex. 2019 Aug 14;29(9):3766-3777. doi: 10.1093/cercor/bhy255.
Oscillatory activity within sensorimotor networks is characterized by time-varying changes in phase and power. The influence of interactions between sensorimotor oscillatory phase and power on human motor function, like corticospinal output, is unknown. We addressed this gap in knowledge by delivering transcranial magnetic stimulation (TMS) to the human motor cortex during electroencephalography recordings in 20 healthy participants. Motor evoked potentials, a measure of corticospinal excitability, were categorized offline based on the mu (8-12 Hz) and beta (13-30 Hz) oscillatory phase and power at the time of TMS. Phase-dependency of corticospinal excitability was evaluated across a continuous range of power levels using trial-by-trial linear mixed-effects models. For mu, there was no effect of PHASE or POWER (P > 0.51), but a significant PHASE × POWER interaction (P = 0.002). The direction of phase-dependency reversed with changing mu power levels: corticospinal output was higher during mu troughs versus peaks when mu power was high while the opposite was true when mu power was low. A similar PHASE × POWER interaction was not present for beta oscillations (P > 0.11). We conclude that the interaction between sensorimotor oscillatory phase and power gates human corticospinal output to an extent unexplained by sensorimotor oscillatory phase or power alone.
感觉运动网络中的振荡活动的特征是相位和功率随时间的变化。感觉运动振荡相位和功率之间的相互作用对人类运动功能(如皮质脊髓输出)的影响尚不清楚。我们通过在 20 名健康参与者的脑电图记录期间向人类运动皮层施加经颅磁刺激(TMS)来解决这一知识空白。运动诱发电位是皮质脊髓兴奋性的一种衡量标准,在线下根据 TMS 时的 mu(8-12 Hz)和 beta(13-30 Hz)振荡相位和功率进行分类。使用逐次线性混合效应模型,在连续的功率水平范围内评估皮质脊髓兴奋性的相位依赖性。对于 mu,PHASE 或 POWER 没有影响(P > 0.51),但存在显著的 PHASE × POWER 相互作用(P = 0.002)。相位依赖性的方向随着 mu 功率水平的变化而反转:当 mu 功率较高时,皮质脊髓输出在 mu 低谷时高于峰值时,而当 mu 功率较低时则相反。对于 beta 振荡,不存在类似的 PHASE × POWER 相互作用(P > 0.11)。我们的结论是,感觉运动振荡相位和功率之间的相互作用在一定程度上限制了人类皮质脊髓输出,而这种作用不能仅用感觉运动振荡相位或功率来解释。