Suppr超能文献

乳腺癌的整合蛋白质组学转录组学研究揭示了与亚型和生存相关的全局蛋白质-mRNA 一致性增加。

Integrated proteotranscriptomics of breast cancer reveals globally increased protein-mRNA concordance associated with subtypes and survival.

机构信息

Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bldg.37/Room 3050B, Bethesda, MD, 20892-4258, USA.

Laboratory of Protein Characterization, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

出版信息

Genome Med. 2018 Dec 3;10(1):94. doi: 10.1186/s13073-018-0602-x.

Abstract

BACKGROUND

Transcriptome analysis of breast cancer discovered distinct disease subtypes of clinical significance. However, it remains a challenge to define disease biology solely based on gene expression because tumor biology is often the result of protein function. Here, we measured global proteome and transcriptome expression in human breast tumors and adjacent non-cancerous tissue and performed an integrated proteotranscriptomic analysis.

METHODS

We applied a quantitative liquid chromatography/mass spectrometry-based proteome analysis using an untargeted approach and analyzed protein extracts from 65 breast tumors and 53 adjacent non-cancerous tissues. Additional gene expression data from Affymetrix Gene Chip Human Gene ST Arrays were available for 59 tumors and 38 non-cancerous tissues in our study. We then applied an integrated analysis of the proteomic and transcriptomic data to examine relationships between them, disease characteristics, and patient survival. Findings were validated in a second dataset using proteome and transcriptome data from "The Cancer Genome Atlas" and the Clinical Proteomic Tumor Analysis Consortium.

RESULTS

We found that the proteome describes differences between cancerous and non-cancerous tissues that are not revealed by the transcriptome. The proteome, but not the transcriptome, revealed an activation of infection-related signal pathways in basal-like and triple-negative tumors. We also observed that proteins rather than mRNAs are increased in tumors and show that this observation could be related to shortening of the 3' untranslated region of mRNAs in tumors. The integrated analysis of the two technologies further revealed a global increase in protein-mRNA concordance in tumors. Highly correlated protein-gene pairs were enriched in protein processing and disease metabolic pathways. The increased concordance between transcript and protein levels was additionally associated with aggressive disease, including basal-like/triple-negative tumors, and decreased patient survival. We also uncovered a strong positive association between protein-mRNA concordance and proliferation of tumors. Finally, we observed that protein expression profiles co-segregate with a Myc activation signature and separate breast tumors into two subgroups with different survival outcomes.

CONCLUSIONS

Our study provides new insights into the relationship between protein and mRNA expression in breast cancer and shows that an integrated analysis of the proteome and transcriptome has the potential of uncovering novel disease characteristics.

摘要

背景

乳腺癌转录组分析发现了具有临床意义的不同疾病亚型。然而,仅基于基因表达来定义疾病生物学仍然具有挑战性,因为肿瘤生物学通常是蛋白质功能的结果。在这里,我们测量了人类乳腺癌肿瘤和相邻非癌组织中的全局蛋白质组和转录组表达,并进行了综合蛋白质组学分析。

方法

我们应用了一种基于定量液相色谱/质谱的无靶向蛋白质组分析方法,并分析了 65 个乳腺癌肿瘤和 53 个相邻非癌组织的蛋白质提取物。我们的研究中,另外还有 59 个肿瘤和 38 个非癌组织的 Affymetrix Gene Chip Human Gene ST Arrays 基因表达数据。然后,我们应用蛋白质组学和转录组学数据的综合分析来检查它们之间的关系、疾病特征和患者生存情况。研究结果在第二个数据集(使用来自“癌症基因组图谱”和临床蛋白质组肿瘤分析联盟的蛋白质组学和转录组学数据)中得到了验证。

结果

我们发现蛋白质组学描述了癌症组织和非癌症组织之间的差异,而转录组学并未揭示这些差异。蛋白质组学而不是转录组学揭示了基底样和三阴性肿瘤中感染相关信号通路的激活。我们还观察到肿瘤中蛋白质而不是 mRNA 增加,并表明这种观察可能与肿瘤中 mRNA 3'非翻译区缩短有关。两种技术的综合分析进一步揭示了肿瘤中蛋白质-mRNA 一致性的整体增加。高度相关的蛋白质-基因对富含蛋白质加工和疾病代谢途径。转录和蛋白质水平之间增加的一致性与侵袭性疾病(包括基底样/三阴性肿瘤)相关,并与患者生存降低相关。我们还发现肿瘤增殖与蛋白质-mRNA 一致性之间存在强烈的正相关。最后,我们观察到蛋白质表达谱与 Myc 激活特征相关,并将乳腺癌分为具有不同生存结果的两个亚组。

结论

我们的研究提供了乳腺癌中蛋白质和 mRNA 表达之间关系的新见解,并表明蛋白质组和转录组的综合分析有可能揭示新的疾病特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7972/6276229/d1c7b8acb2e4/13073_2018_602_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验