Suppr超能文献

用于蛋白质模型质量评估的重新优化的UNRES势

Reoptimized UNRES Potential for Protein Model Quality Assessment.

作者信息

Faraggi Eshel, Krupa Pawel, Mozolewska Magdalena A, Liwo Adam, Kloczkowski Andrzej

机构信息

Research and Information Systems, LLC, Indianapolis, IN 46240, USA.

Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.

出版信息

Genes (Basel). 2018 Dec 3;9(12):601. doi: 10.3390/genes9120601.

Abstract

Ranking protein structure models is an elusive problem in bioinformatics. These models are evaluated on both the degree of similarity to the native structure and the folding pathway. Here, we simulated the use of the coarse-grained UNited RESidue (UNRES) force field as a tool to choose the best protein structure models for a given protein sequence among a pool of candidate models, using server data from the CASP11 experiment. Because the original UNRES was optimized for Molecular Dynamics simulations, we reoptimized UNRES using a deep feed-forward neural network, and we show that introducing additional descriptive features can produce better results. Overall, we found that the reoptimized UNRES performs better in selecting the best structures and tracking protein unwinding from its native state. We also found a relatively poor correlation between UNRES values and the model's Template Modeling Score (TMS). This is remedied by reoptimization. We discuss some cases where our reoptimization procedure is useful. The reoptimized version of UNRES (OUNRES) is available at http://mamiris.com and http://www.unres.pl.

摘要

对蛋白质结构模型进行排名是生物信息学中一个难以解决的问题。这些模型会根据与天然结构的相似程度以及折叠途径进行评估。在这里,我们利用来自CASP11实验的服务器数据,模拟使用粗粒度的联合残基(UNRES)力场作为一种工具,以便在一组候选模型中为给定的蛋白质序列选择最佳的蛋白质结构模型。由于原始的UNRES是针对分子动力学模拟进行优化的,我们使用深度前馈神经网络对UNRES进行了重新优化,并且我们表明引入额外的描述性特征可以产生更好的结果。总体而言,我们发现重新优化后的UNRES在选择最佳结构以及追踪蛋白质从其天然状态解旋方面表现更好。我们还发现UNRES值与模型的模板建模得分(TMS)之间的相关性相对较差。通过重新优化可以对此进行补救。我们讨论了一些我们的重新优化程序有用的情况。重新优化后的UNRES版本(OUNRES)可在http://mamiris.com和http://www.unres.pl获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a90/6315818/c08d11116e3b/genes-09-00601-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验