Suppr超能文献

用于蛋白质-蛋白质对接的粗粒度OPEP力场评估。

Evaluation of the coarse-grained OPEP force field for protein-protein docking.

作者信息

Kynast Philipp, Derreumaux Philippe, Strodel Birgit

机构信息

Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, 52425 Germany.

Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique, Paris, 75005 France ; Institut Universitaire de France, 103 Boulevard Saint-Michel, Paris, 75005 France ; University Paris Diderot, Sorbonne Paris Cité, Paris, 75205 France.

出版信息

BMC Biophys. 2016 Apr 21;9:4. doi: 10.1186/s13628-016-0029-y. eCollection 2016.

Abstract

BACKGROUND

Knowing the binding site of protein-protein complexes helps understand their function and shows possible regulation sites. The ultimate goal of protein-protein docking is the prediction of the three-dimensional structure of a protein-protein complex. Docking itself only produces plausible candidate structures, which must be ranked using scoring functions to identify the structures that are most likely to occur in nature.

METHODS

In this work, we rescore rigid body protein-protein predictions using the optimized potential for efficient structure prediction (OPEP), which is a coarse-grained force field. Using a force field based on continuous functions rather than a grid-based scoring function allows the introduction of protein flexibility during the docking procedure. First, we produce protein-protein predictions using ZDOCK, and after energy minimization via OPEP we rank them using an OPEP-based soft rescoring function. We also train the rescoring function for different complex classes and demonstrate its improved performance for an independent dataset.

RESULTS

The trained rescoring function produces a better ranking than ZDOCK for more than 50 % of targets, rising to over 70 % when considering only enzyme/inhibitor complexes.

CONCLUSIONS

This study demonstrates for the first time that energy functions derived from the coarse-grained OPEP force field can be employed to rescore predictions for protein-protein complexes.

摘要

背景

了解蛋白质-蛋白质复合物的结合位点有助于理解其功能,并显示可能的调控位点。蛋白质-蛋白质对接的最终目标是预测蛋白质-蛋白质复合物的三维结构。对接本身仅产生合理的候选结构,必须使用评分函数对其进行排序,以识别自然界中最可能出现的结构。

方法

在这项工作中,我们使用高效结构预测优化势(OPEP)对刚体蛋白质-蛋白质预测结果进行重新评分,OPEP是一种粗粒度力场。使用基于连续函数的力场而非基于网格的评分函数,能够在对接过程中引入蛋白质的灵活性。首先,我们使用ZDOCK生成蛋白质-蛋白质预测结果,然后通过OPEP进行能量最小化,之后使用基于OPEP的软重新评分函数对其进行排序。我们还针对不同的复合物类别训练重新评分函数,并在独立数据集上证明了其性能的提升。

结果

对于超过50%的目标,经过训练的重新评分函数比ZDOCK产生了更好的排序,在仅考虑酶/抑制剂复合物时,这一比例上升至70%以上。

结论

本研究首次证明,源自粗粒度OPEP力场的能量函数可用于对蛋白质-蛋白质复合物的预测结果进行重新评分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/333f/4839147/e8f04c30a1d0/13628_2016_29_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验