Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
Adv Mater. 2019 Feb;31(5):e1806993. doi: 10.1002/adma.201806993. Epub 2018 Dec 5.
In quantum materials, macroscopic behavior is governed in nontrivial ways by quantum phenomena. This is usually achieved by exquisite control over atomic positions in crystalline solids. Here, it is demonstrated that the use of disordered glassy materials provides unique opportunities to tailor quantum material properties. By borrowing ideas from single-molecule spectroscopy, single delocalized π-electron dye systems are isolated in relatively rigid ultrasmall (<10 nm diameter) amorphous silica nanoparticles. It is demonstrated that chemically tuning the local amorphous silica environment around the dye over a range of compositions enables exquisite control over dye quantum behavior, leading to efficient probes for photodynamic therapy (PDT) and stochastic optical reconstruction microscopy (STORM). The results suggest that efficient fine-tuning of light-induced quantum behavior mediated via effects like spin-orbit coupling can be effectively achieved by systematically varying averaged local environments in glassy amorphous materials as opposed to tailoring well-defined neighboring atomic lattice positions in crystalline solids. The resulting nanoprobes exhibit features proven to enable clinical translation.
在量子材料中,宏观行为以非平凡的方式受到量子现象的控制。这通常通过对晶体固体中原子位置的精细控制来实现。在这里,研究表明使用无序的玻璃状材料为定制量子材料特性提供了独特的机会。通过借鉴单分子光谱学的思想,将单个离域π-电子染料系统隔离在相对刚性的超小(<10nm 直径)无定形二氧化硅纳米颗粒中。研究表明,通过在一系列组成范围内化学调节染料周围局部无定形二氧化硅环境,可以对染料量子行为进行精细控制,从而为光动力疗法(PDT)和随机光学重建显微镜(STORM)提供高效探针。结果表明,通过系统地改变玻璃状无定形材料中的平均局部环境,而不是在晶体固体中精细调整定义良好的相邻原子晶格位置,可以有效地实现光诱导量子行为的高效微调,这种微调由自旋轨道耦合等效应介导。所得的纳米探针具有已证明可实现临床转化的特征。