Suppr超能文献

电子态混合控制视紫红质与全反式发色团类似物的光反应活性。

Electronic State Mixing Controls the Photoreactivity of a Rhodopsin with all- trans Chromophore Analogues.

作者信息

Manathunga Madushanka, Yang Xuchun, Olivucci Massimo

机构信息

Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States.

Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , via A. Moro 2 , I-53100 Siena , Italy.

出版信息

J Phys Chem Lett. 2018 Nov 1;9(21):6350-6355. doi: 10.1021/acs.jpclett.8b02550. Epub 2018 Oct 23.

Abstract

Rhodopsins hosting synthetic retinal protonated Schiff base analogues are important for developing tools for optogenetics and high-resolution imaging. The ideal spectroscopic properties of such analogues include long-wavelength absorption/emission and fast/hindered photoisomerization. While the former may be achieved, for instance, by elongating the chromophore π-system, the latter requires a detailed understanding of the substituent effects (i.e., steric or electronic) on the chromophore light-induced dynamics. In the present letter we compare the results of quantum mechanics/molecular mechanics excited-state trajectories of native and analogue-hosting microbial rhodopsins from the eubacterium Anabaena. The results uncover a relationship between the nature of the substituent on the analogue (i.e., electron-donating (a Me group) or electron-withdrawing (a CF group)) and rhodopsin excited-state lifetime. Most importantly, we show that electron-donating or -withdrawing substituents cause a decrease or an increase in the electronic mixing of the first two excited states which, in turn, controls the photoisomerization speed.

摘要

含有合成视黄醛质子化席夫碱类似物的视紫红质对于开发光遗传学工具和高分辨率成像技术非常重要。此类类似物的理想光谱特性包括长波长吸收/发射以及快速/受阻的光异构化。虽然前者例如可以通过延长发色团π-体系来实现,但后者需要详细了解取代基对发色团光诱导动力学的影响(即空间或电子效应)。在本信函中,我们比较了来自蓝细菌鱼腥藻的天然和含有类似物的微生物视紫红质的量子力学/分子力学激发态轨迹结果。结果揭示了类似物上取代基的性质(即供电子(甲基)或吸电子(三氟甲基))与视紫红质激发态寿命之间的关系。最重要的是,我们表明供电子或吸电子取代基会导致前两个激发态的电子混合减少或增加,进而控制光异构化速度。

相似文献

1
Electronic State Mixing Controls the Photoreactivity of a Rhodopsin with all- trans Chromophore Analogues.
J Phys Chem Lett. 2018 Nov 1;9(21):6350-6355. doi: 10.1021/acs.jpclett.8b02550. Epub 2018 Oct 23.
2
Impact of Electronic State Mixing on the Photoisomerization Time Scale of the Retinal Chromophore.
J Phys Chem Lett. 2017 Oct 19;8(20):5222-5227. doi: 10.1021/acs.jpclett.7b02344. Epub 2017 Oct 11.
3
Photoisomerization pathway of the microbial rhodopsin chromophore in solution.
Photochem Photobiol Sci. 2024 Aug;23(8):1435-1443. doi: 10.1007/s43630-024-00602-w. Epub 2024 Jun 17.
4
Molecular bases for the selection of the chromophore of animal rhodopsins.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15297-302. doi: 10.1073/pnas.1510262112. Epub 2015 Nov 25.
6
A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins.
Angew Chem Int Ed Engl. 2022 Jan 10;61(2):e202111930. doi: 10.1002/anie.202111930. Epub 2021 Nov 29.
9
Unique Vibrational Characteristics and Structures of the Photoexcited Retinal Chromophore in Ion-Pumping Rhodopsins.
J Phys Chem B. 2023 Nov 23;127(46):9873-9886. doi: 10.1021/acs.jpcb.3c02146. Epub 2023 Nov 8.
10
The nature of the primary photochemical events in rhodopsin and isorhodopsin.
Biophys J. 1988 Mar;53(3):367-85. doi: 10.1016/S0006-3495(88)83114-X.

引用本文的文献

1
Study of Photoselectivity in Linear Conjugated Chromophores Using the XMS-CASPT2 Method.
ACS Phys Chem Au. 2024 Oct 2;4(6):736-749. doi: 10.1021/acsphyschemau.4c00065. eCollection 2024 Nov 27.
2
Tuning Two-Photon Absorption in Rhodopsin Chromophore via Backbone Modification: The Story Told by CC2 and TD-DFT.
J Chem Theory Comput. 2024 Sep 13;20(18):8118-26. doi: 10.1021/acs.jctc.4c00675.
4
Deciphering Methylation Effects on S(*) Internal Conversion in the Simplest Linear α,β-Unsaturated Carbonyl.
J Phys Chem A. 2023 Jun 29;127(25):5360-5373. doi: 10.1021/acs.jpca.3c02582. Epub 2023 Jun 18.
5
Ultrafast proton-coupled isomerization in the phototransformation of phytochrome.
Nat Chem. 2022 Jul;14(7):823-830. doi: 10.1038/s41557-022-00944-x. Epub 2022 May 16.
6
Theoretical Study of the Photoisomerization Mechanism of All--Retinyl Acetate.
J Phys Chem A. 2021 Sep 30;125(38):8358-8372. doi: 10.1021/acs.jpca.1c05533. Epub 2021 Sep 21.
7
Mechanism of Color and Photoacidity Tuning for the Protonated Green Fluorescent Protein Chromophore.
J Am Chem Soc. 2020 Jun 24;142(25):11032-11041. doi: 10.1021/jacs.0c02796. Epub 2020 Jun 9.
9
Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin.
J Phys Chem B. 2019 May 16;123(19):4242-4250. doi: 10.1021/acs.jpcb.9b01136. Epub 2019 May 7.
10
Fluorescence Enhancement of a Microbial Rhodopsin via Electronic Reprogramming.
J Am Chem Soc. 2019 Jan 9;141(1):262-271. doi: 10.1021/jacs.8b09311. Epub 2018 Dec 28.

本文引用的文献

1
Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores.
Chem Rev. 2017 Nov 22;117(22):13502-13565. doi: 10.1021/acs.chemrev.7b00177. Epub 2017 Oct 30.
2
Impact of Electronic State Mixing on the Photoisomerization Time Scale of the Retinal Chromophore.
J Phys Chem Lett. 2017 Oct 19;8(20):5222-5227. doi: 10.1021/acs.jpclett.7b02344. Epub 2017 Oct 11.
3
Fine Tuning of Retinal Photoinduced Decay in Solution.
J Phys Chem Lett. 2017 Sep 21;8(18):4407-4412. doi: 10.1021/acs.jpclett.7b01780. Epub 2017 Sep 5.
4
Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore.
Cell Chem Biol. 2017 Mar 16;24(3):415-425. doi: 10.1016/j.chembiol.2017.02.008. Epub 2017 Mar 2.
5
Molecular bases for the selection of the chromophore of animal rhodopsins.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15297-302. doi: 10.1073/pnas.1510262112. Epub 2015 Nov 25.
6
Origin of Fluorescence in 11-cis Locked Bovine Rhodopsin.
J Chem Theory Comput. 2012 Aug 14;8(8):2559-63. doi: 10.1021/ct3002514. Epub 2012 Jul 31.
7
100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin.
Phys Chem Chem Phys. 2015 Oct 14;17(38):25429-39. doi: 10.1039/c5cp04353k.
9
Synthetic control of retinal photochemistry and photophysics in solution.
J Am Chem Soc. 2014 Feb 12;136(6):2650-8. doi: 10.1021/ja4121814. Epub 2014 Jan 30.
10
Ultrafast photochemistry of anabaena sensory rhodopsin: experiment and theory.
Biochim Biophys Acta. 2014 May;1837(5):589-97. doi: 10.1016/j.bbabio.2013.09.014. Epub 2013 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验