Suppr超能文献

表面官能团影响碲化镉量子点在线粒体水平的行为。

Surface functional groups affect CdTe QDs behavior at mitochondrial level.

作者信息

Xiang Xun, Gao Tao, Zhang Bo-Rui, Jiang Feng-Lei, Liu Yi

机构信息

State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . Email:

College of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , PR China.

出版信息

Toxicol Res (Camb). 2018 Aug 22;7(6):1071-1080. doi: 10.1039/c8tx00160j. eCollection 2018 Nov 1.

Abstract

Quantum dots (QDs) are used in the bio-medical area because of their excellent optical properties. Their biomedical utilization has remained a serious biosecurity concern. Cytotoxicity experiments have shown that QD toxicity is connected to the properties of the QDs. In this paper, the toxicity of QDs was studied from the aspect of surface functional groups at the mitochondrial level. Three types of ligands, thioglycollic acid (TGA), mercaptoethylamine (MEA) and l-cysteine (l-Cys), which have similar structures but different functional groups were used to coat CdTe QDs. The effects of the three types of CdTe QDs on mitochondria were then observed. The experimental results showed the three types of CdTe QDs could impair mitochondrial respiration, destroy membrane potential and induce mitochondrial swelling. Interestingly, MEA-CdTe QDs showed similar effects on membrane potential and mitochondrial swelling as did l-Cys-CdTe QDs, while TGA-CdTe QDs showed stronger effects than that of the two other QDs. Moreover, the three types of CdTe QDs showed significantly different effects on mitochondrial membrane fluidity. MEA-CdTe QDs decreased mitochondrial membrane fluidity, l-Cys-CdTe QDs showed no obvious influence on mitochondrial membrane fluidity and TGA-CdTe QDs increased mitochondrial membrane fluidity. The interaction mechanism of CdTe QDs on mitochondrial permeability transition (MPT) pores as well as Cd release by CdTe QDs were checked to determine the reason for their different effects on mitochondria. The results showed that the impact of the three types of CdTe QDs on mitochondria was not only related to the released metal ion, but also to their interaction with MPT pore proteins. This work emphasizes the importance of surface functional groups in the behavior of CdTe QDs at the sub-cellular level.

摘要

量子点(QDs)因其优异的光学性质而被应用于生物医学领域。它们在生物医学方面的应用一直是一个严重的生物安全问题。细胞毒性实验表明,量子点的毒性与量子点的性质有关。本文从线粒体水平的表面官能团方面研究了量子点的毒性。使用三种结构相似但官能团不同的配体,巯基乙酸(TGA)、巯基乙胺(MEA)和L-半胱氨酸(L-Cys)来包覆碲化镉量子点。然后观察这三种碲化镉量子点对线粒体的影响。实验结果表明,这三种碲化镉量子点会损害线粒体呼吸、破坏膜电位并诱导线粒体肿胀。有趣的是,MEA-碲化镉量子点对膜电位和线粒体肿胀的影响与L-Cys-碲化镉量子点相似,而TGA-碲化镉量子点的影响比其他两种量子点更强。此外,这三种碲化镉量子点对线粒体膜流动性的影响也有显著差异。MEA-碲化镉量子点降低了线粒体膜流动性,L-Cys-碲化镉量子点对线粒体膜流动性没有明显影响,而TGA-碲化镉量子点增加了线粒体膜流动性。研究了碲化镉量子点对线粒体通透性转换(MPT)孔的相互作用机制以及碲化镉量子点的镉释放情况,以确定它们对线粒体产生不同影响的原因。结果表明,这三种碲化镉量子点对线粒体的影响不仅与释放的金属离子有关,还与它们与MPT孔蛋白的相互作用有关。这项工作强调了表面官能团在亚细胞水平上碲化镉量子点行为中的重要性。

相似文献

1
Surface functional groups affect CdTe QDs behavior at mitochondrial level.
Toxicol Res (Camb). 2018 Aug 22;7(6):1071-1080. doi: 10.1039/c8tx00160j. eCollection 2018 Nov 1.
4
Size Effects on the Interaction of QDs with the Mitochondrial Membrane In Vitro.
J Membr Biol. 2016 Dec;249(6):757-767. doi: 10.1007/s00232-016-9920-3. Epub 2016 Aug 10.
6
Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes.
Toxicol Sci. 2015 Jul;146(1):31-42. doi: 10.1093/toxsci/kfv068. Epub 2015 Mar 25.
7
Cytotoxicity of CdTe quantum dots with different surface coatings against yeast Saccharomyces cerevisiae.
Ecotoxicol Environ Saf. 2019 Jun 15;174:467-474. doi: 10.1016/j.ecoenv.2019.03.013. Epub 2019 Mar 7.
8
An in vitro study of vascular endothelial toxicity of CdTe quantum dots.
Toxicology. 2011 Apr 11;282(3):94-103. doi: 10.1016/j.tox.2011.01.015. Epub 2011 Feb 1.
9
Necrotic cell death induced by the protein-mediated intercellular uptake of CdTe quantum dots.
Chemosphere. 2015 Sep;135:240-9. doi: 10.1016/j.chemosphere.2015.04.044. Epub 2015 May 15.

引用本文的文献

1
The effect of PEG functionalization on the behavior and toxicity of CdTe quantum dots.
RSC Adv. 2019 Apr 17;9(22):12218-12225. doi: 10.1039/c9ra00022d.
2
Effects of Oral Exposure to Mn-Doped ZnS Quantum Dots on Intestinal Tract and Gut Microbiota in Mice.
Front Physiol. 2021 Jul 6;12:657266. doi: 10.3389/fphys.2021.657266. eCollection 2021.
3
Assessment of the Toxicity of Quantum Dots through Biliometric Analysis.
Int J Environ Res Public Health. 2021 May 27;18(11):5768. doi: 10.3390/ijerph18115768.

本文引用的文献

1
Enhanced Sampling of Intrinsic Structural Heterogeneity of the BH3-Only Protein Binding Interface of Bcl-xL.
J Phys Chem B. 2017 Oct 5;121(39):9160-9168. doi: 10.1021/acs.jpcb.7b06768. Epub 2017 Sep 27.
3
Size Effects on the Interaction of QDs with the Mitochondrial Membrane In Vitro.
J Membr Biol. 2016 Dec;249(6):757-767. doi: 10.1007/s00232-016-9920-3. Epub 2016 Aug 10.
5
Rat Liver Mitochondrial Dysfunction Induced by an Organic Arsenical Compound 4-(2-Nitrobenzaliminyl) Phenyl Arsenoxide.
J Membr Biol. 2015 Dec;248(6):1071-8. doi: 10.1007/s00232-015-9818-5. Epub 2015 Jun 19.
6
Tl+ induces the permeability transition pore in Ca2+-loaded rat liver mitochondria energized by glutamate and malate.
Toxicol In Vitro. 2015 Aug;29(5):1034-41. doi: 10.1016/j.tiv.2015.04.006. Epub 2015 Apr 21.
7
Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes.
Toxicol Sci. 2015 Jul;146(1):31-42. doi: 10.1093/toxsci/kfv068. Epub 2015 Mar 25.
9
Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells.
Free Radic Biol Med. 2014 Aug;73:84-94. doi: 10.1016/j.freeradbiomed.2014.04.026. Epub 2014 May 10.
10
Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification.
Biochim Biophys Acta. 2014 Sep;1842(9):1413-22. doi: 10.1016/j.bbadis.2014.04.022. Epub 2014 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验