Suppr超能文献

基于食管内视镜观察,使用深度学习人工智能进行诊断。

Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus.

作者信息

Kumagai Youichi, Takubo Kaiyo, Kawada Kenro, Aoyama Kazuharu, Endo Yuma, Ozawa Tsuyoshi, Hirasawa Toshiaki, Yoshio Toshiyuki, Ishihara Soichiro, Fujishiro Mitsuhiro, Tamaru Jun-Ichi, Mochiki Erito, Ishida Hideyuki, Tada Tomohiro

机构信息

Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan.

Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.

出版信息

Esophagus. 2019 Apr;16(2):180-187. doi: 10.1007/s10388-018-0651-7. Epub 2018 Dec 13.

Abstract

BACKGROUND AND AIMS

The endocytoscopic system (ECS) helps in virtual realization of histology and can aid in confirming histological diagnosis in vivo. We propose replacing biopsy-based histology for esophageal squamous cell carcinoma (ESCC) by using the ECS. We applied deep-learning artificial intelligence (AI) to analyse ECS images of the esophagus to determine whether AI can support endoscopists for the replacement of biopsy-based histology.

METHODS

A convolutional neural network-based AI was constructed based on GoogLeNet and trained using 4715 ECS images of the esophagus (1141 malignant and 3574 non-malignant images). To evaluate the diagnostic accuracy of the AI, an independent test set of 1520 ECS images, collected from 55 consecutive patients (27 ESCCs and 28 benign esophageal lesions) were examined.

RESULTS

On the basis of the receiver-operating characteristic curve analysis, the areas under the curve of the total images, higher magnification pictures, and lower magnification pictures were 0.85, 0.90, and 0.72, respectively. The AI correctly diagnosed 25 of the 27 ESCC cases, with an overall sensitivity of 92.6%. Twenty-five of the 28 non-cancerous lesions were diagnosed as non-malignant, with a specificity of 89.3% and an overall accuracy of 90.9%. Two cases of malignant lesions, misdiagnosed as non-malignant by the AI, were correctly diagnosed as malignant by the endoscopist. Among the 3 cases of non-cancerous lesions diagnosed as malignant by the AI, 2 were of radiation-related esophagitis and one was of gastroesophageal reflux disease.

CONCLUSION

AI is expected to support endoscopists in diagnosing ESCC based on ECS images without biopsy-based histological reference.

摘要

背景与目的

内镜超声系统(ECS)有助于实现组织学的虚拟呈现,并有助于在体内确认组织学诊断。我们提议使用ECS取代食管鳞状细胞癌(ESCC)基于活检的组织学检查。我们应用深度学习人工智能(AI)分析食管的ECS图像,以确定AI是否能够辅助内镜医师取代基于活检的组织学检查。

方法

基于GoogLeNet构建了一个基于卷积神经网络的AI,并使用4715张食管ECS图像(1141张恶性图像和3574张非恶性图像)进行训练。为了评估AI的诊断准确性,对从55例连续患者(27例ESCC和28例良性食管病变)收集的1520张ECS图像的独立测试集进行了检查。

结果

根据受试者操作特征曲线分析,总图像、高倍放大图像和低倍放大图像的曲线下面积分别为0.85、0.90和0.72。AI正确诊断了27例ESCC病例中的25例,总体敏感性为92.6%。28例非癌性病变中有25例被诊断为非恶性,特异性为89.3%,总体准确率为90.9%。AI误诊为非恶性的2例恶性病变,经内镜医师正确诊断为恶性。在AI诊断为恶性的3例非癌性病变中,2例为放射性食管炎,1例为胃食管反流病。

结论

预计AI能够辅助内镜医师基于ECS图像诊断ESCC,而无需基于活检的组织学参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验