Suppr超能文献

基于 pySCENIC 从单细胞转录组数据推断基因调控网络

Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC.

机构信息

Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.

Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Methods Mol Biol. 2021;2328:171-182. doi: 10.1007/978-1-0716-1534-8_10.

Abstract

With the advent of recent next-generation sequencing (NGS) technologies in genomics, transcriptomics, and epigenomics, profiling single-cell sequencing became possible. The single-cell RNA sequencing (scRNA-seq) is widely used to characterize diverse cell populations and ascertain cell type-specific regulatory mechanisms. The gene regulatory network (GRN) mainly consists of genes and their regulators-transcription factors (TF). Here, we describe the lightning-fast Python implementation of the SCENIC (Single-Cell reEgulatory Network Inference and Clustering) pipeline called pySCENIC. Using single-cell RNA-seq data, it maps TFs onto gene regulatory networks and integrates various cell types to infer cell-specific GRNs. There are two fast and efficient GRN inference algorithms, GRNBoost2 and GENIE3, optionally available with pySCENIC. The pipeline has three steps: (1) identification of potential TF targets based on co-expression; (2) TF-motif enrichment analysis to identify the direct targets (regulons); and (3) scoring the activity of regulons (or other gene sets) on single cell types.

摘要

随着基因组学、转录组学和表观基因组学中新一代测序(NGS)技术的出现,单细胞测序的分析成为可能。单细胞 RNA 测序(scRNA-seq)被广泛用于描述不同的细胞群体,并确定细胞类型特异性的调节机制。基因调控网络(GRN)主要由基因及其调控因子-转录因子(TF)组成。在这里,我们描述了一个名为 pySCENIC 的快速 Python 实现的 SCENIC(单细胞重新调控网络推断和聚类)管道。使用单细胞 RNA-seq 数据,它将 TF 映射到基因调控网络,并整合各种细胞类型以推断细胞特异性 GRN。pySCENIC 提供了两种快速高效的 GRN 推断算法,GRNBoost2 和 GENIE3。该管道有三个步骤:(1)基于共表达识别潜在的 TF 靶标;(2)TF 基序富集分析以识别直接靶标(调节子);(3)对单个细胞类型的调节子(或其他基因集)的活性进行评分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验