Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
Methods Mol Biol. 2021;2328:171-182. doi: 10.1007/978-1-0716-1534-8_10.
With the advent of recent next-generation sequencing (NGS) technologies in genomics, transcriptomics, and epigenomics, profiling single-cell sequencing became possible. The single-cell RNA sequencing (scRNA-seq) is widely used to characterize diverse cell populations and ascertain cell type-specific regulatory mechanisms. The gene regulatory network (GRN) mainly consists of genes and their regulators-transcription factors (TF). Here, we describe the lightning-fast Python implementation of the SCENIC (Single-Cell reEgulatory Network Inference and Clustering) pipeline called pySCENIC. Using single-cell RNA-seq data, it maps TFs onto gene regulatory networks and integrates various cell types to infer cell-specific GRNs. There are two fast and efficient GRN inference algorithms, GRNBoost2 and GENIE3, optionally available with pySCENIC. The pipeline has three steps: (1) identification of potential TF targets based on co-expression; (2) TF-motif enrichment analysis to identify the direct targets (regulons); and (3) scoring the activity of regulons (or other gene sets) on single cell types.
随着基因组学、转录组学和表观基因组学中新一代测序(NGS)技术的出现,单细胞测序的分析成为可能。单细胞 RNA 测序(scRNA-seq)被广泛用于描述不同的细胞群体,并确定细胞类型特异性的调节机制。基因调控网络(GRN)主要由基因及其调控因子-转录因子(TF)组成。在这里,我们描述了一个名为 pySCENIC 的快速 Python 实现的 SCENIC(单细胞重新调控网络推断和聚类)管道。使用单细胞 RNA-seq 数据,它将 TF 映射到基因调控网络,并整合各种细胞类型以推断细胞特异性 GRN。pySCENIC 提供了两种快速高效的 GRN 推断算法,GRNBoost2 和 GENIE3。该管道有三个步骤:(1)基于共表达识别潜在的 TF 靶标;(2)TF 基序富集分析以识别直接靶标(调节子);(3)对单个细胞类型的调节子(或其他基因集)的活性进行评分。