Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802.
Department of Biology, Washington University, St. Louis, Missouri 63130.
Plant Physiol. 2019 Feb;179(2):761-769. doi: 10.1104/pp.18.01357. Epub 2018 Dec 14.
UTEX 2973 ( 2973) has the shortest reported doubling time (2.1 h) among cyanobacteria, making it a promising platform for the solar-based production of biochemicals. In this meta-analysis, its intracellular flux distribution was recomputed using genome-scale isotopic nonstationary C-metabolic flux analysis given the labeling dynamics of 13 metabolites reported in an earlier study. To achieve this, a genome-scale mapping model, namely mSyu593, was constructed using the mSyn617 mapping model for sp. PCC 6803 ( 6803) as the starting point encompassing 593 reactions. The flux elucidation revealed nearly complete conversion (greater than 96%) of the assimilated carbon into biomass in 2973. In contrast, 6803 achieves complete conversion of only 86% of the assimilated carbon. This high biomass yield was enabled by the reincorporation of the fixed carbons lost in anabolic and photorespiratory pathways in conjunction with flux rerouting through a nondecarboxylating reaction such as phosphoketolase. This reincorporation of lost CO sustains a higher flux through the photorespiratory C2 cycle that fully meets the glycine and serine demands for growth. In accordance with the high carbon efficiency drive, acetyl-coenzyme A was entirely produced using the carbon-efficient phosphoketolase pathway. Comparison of the 2973 flux map with that of 6803 revealed differences in the use of Calvin cycle and photorespiratory pathway reactions. The two species used different reactions for the synthesis of metabolites such as fructose-6-phosphate, glycine, sedoheptulose-7-phosphate, and Ser. These findings allude to a highly carbon-efficient metabolism alongside the fast carbon uptake rate in 2973, which explains its faster growth rate.
UTEX 2973(2973)是蓝藻中报道的倍增时间最短的(2.1 小时),使其成为基于太阳能生产生物化学物质的有前途的平台。在这项荟萃分析中,使用基于标记动力学的基因组尺度非稳态 C 代谢通量分析,重新计算了其细胞内通量分布,该标记动力学在早期研究中报告了 13 种代谢物。为了实现这一目标,使用 mSyn617 映射模型作为起点,构建了一个基因组尺度的映射模型,即 mSyu593,其中包括 593 种反应。通量阐明表明,在 2973 中,几乎完全将同化的碳转化为生物质(大于 96%)。相比之下,6803 只能完全转化同化碳的 86%。这种高生物质产率是通过在合成代谢和光呼吸途径中丢失的固定碳与通过非脱羧反应(例如磷酸酮酶)重新掺入以及通量重新路由来实现的。这种失去的 CO 的再掺入维持了更高的通量通过光呼吸 C2 循环,完全满足生长对甘氨酸和丝氨酸的需求。根据高碳效率驱动,乙酰辅酶 A 完全通过碳效率高的磷酸酮酶途径产生。将 2973 通量图与 6803 通量图进行比较,发现了卡尔文循环和光呼吸途径反应的使用差异。这两个物种使用不同的反应来合成果糖-6-磷酸、甘氨酸、景天庚酮糖-7-磷酸和 Ser 等代谢物。这些发现暗示了 2973 具有高度碳效率的代谢以及快速的碳摄取率,这解释了其更快的生长速度。