Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.
Key Laboratory of Pollution Ecology and Environmental Engineering , Institute of Applied Ecology, Chinese Academy of Sciences , Liaoning 110016 , People's Republic of China.
Environ Sci Technol. 2019 Jan 15;53(2):692-701. doi: 10.1021/acs.est.8b05871. Epub 2019 Jan 4.
Organohalide-respiring bacteria are key players for the turnover of organohalogens. At sites impacted with chlorinated ethenes, bioremediation promotes reductive dechlorination; however, stoichiometric conversion to environmentally benign ethene is not always achieved. We demonstrate that nitrous oxide (NO), a compound commonly present in groundwater, inhibits organohalide respiration. NO concentrations in the low micromolar range decreased dechlorination rates and resulted in incomplete dechlorination of tetrachloroethene (PCE) in Geobacter lovleyi strain SZ and of cis-1,2-dichloroethene ( cDCE) and vinyl chloride (VC) in Dehalococcoides mccartyi strain BAV1 axenic cultures. Presumably, NO interferes with reductive dechlorination by reacting with super-reduced Co(I)-corrinoids of reductive dehalogenases, which is supported by the finding that NO did not inhibit corrinoid-independent fumarate-to-succinate reduction in strain SZ. Kinetic analyses revealed a best fit to the noncompetitive Michaelis-Menten inhibition model and determined NO inhibitory constants, K, for PCE and cDCE dechlorination of 40.8 ± 3.8 and 21.2 ± 3.5 μM in strain SZ and strain BAV1, respectively. The lowest K value of 9.6 ± 0.4 μM was determined for VC to ethene reductive dechlorination in strain BAV1, suggesting that this crucial dechlorination step for achieving detoxification is most susceptible to NO inhibition. Groundwater NO concentrations exceeding 100 μM are not uncommon, especially in watersheds impacted by nitrate runoff from agricultural sources. Thus, dissolved NO measurements can inform about cDCE and VC stalls at sites impacted with chlorinated ethenes.
有机卤化物呼吸细菌是有机卤化物转化的关键参与者。在受氯代乙烯污染的地点,生物修复促进了还原脱氯;然而,并非总能实现化学计量转化为环境友好的乙烯。我们证明,一氧化二氮(NO),一种通常存在于地下水中的化合物,会抑制有机卤化物呼吸。低微摩尔范围内的 NO 浓度会降低脱氯速率,并导致 Geobacter lovleyi 菌株 SZ 中四氯乙烯(PCE)和 cis-1,2-二氯乙烯(cDCE)和氯乙烯(VC)的不完全脱氯。推测 NO 通过与还原脱卤酶的超还原 Co(I)-卟啉反应来干扰还原脱氯,这一推测得到了以下发现的支持:NO 不会抑制菌株 SZ 中的富马酸到琥珀酸的非依赖于卟啉的还原。动力学分析表明,最适合非竞争性米氏门控抑制模型,并确定了 NO 对 PCE 和 cDCE 脱氯的抑制常数 K,在菌株 SZ 和菌株 BAV1 中分别为 40.8 ± 3.8 和 21.2 ± 3.5 μM。在菌株 BAV1 中,VC 到乙烯的还原脱氯的最低 K 值为 9.6 ± 0.4 μM,表明实现解毒的这一关键脱氯步骤最容易受到 NO 抑制。地下水中超过 100 μM 的 NO 浓度并不罕见,特别是在受农业来源硝酸盐径流影响的流域。因此,溶解的 NO 测量可以为受氯代乙烯污染的地点的 cDCE 和 VC 失速提供信息。