Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States.
Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae027.
Methane (CH4) and nitrous oxide (N2O) are major greenhouse gases that are predominantly generated by microbial activities in anoxic environments. N2O inhibition of methanogenesis has been reported, but comprehensive efforts to obtain kinetic information are lacking. Using the model methanogen Methanosarcina barkeri strain Fusaro and digester sludge-derived methanogenic enrichment cultures, we conducted growth yield and kinetic measurements and showed that micromolar concentrations of N2O suppress the growth of methanogens and CH4 production from major methanogenic substrate classes. Acetoclastic methanogenesis, estimated to account for two-thirds of the annual 1 billion metric tons of biogenic CH4, was most sensitive to N2O, with inhibitory constants (KI) in the range of 18-25 μM, followed by hydrogenotrophic (KI, 60-90 μM) and methylotrophic (KI, 110-130 μM) methanogenesis. Dissolved N2O concentrations exceeding these KI values are not uncommon in managed (i.e. fertilized soils and wastewater treatment plants) and unmanaged ecosystems. Future greenhouse gas emissions remain uncertain, particularly from critical zone environments (e.g. thawing permafrost) with large amounts of stored nitrogenous and carbonaceous materials that are experiencing unprecedented warming. Incorporating relevant feedback effects, such as the significant N2O inhibition on methanogenesis, can refine climate models and improve predictive capabilities.
甲烷(CH4)和氧化亚氮(N2O)是主要的温室气体,主要由缺氧环境中的微生物活动产生。已经报道了 N2O 对甲烷生成的抑制作用,但缺乏全面获取动力学信息的努力。使用模型产甲烷菌 Methanosarcina barkeri 菌株 Fusaro 和消化器污泥衍生的产甲烷富集培养物,我们进行了生长产量和动力学测量,并表明纳摩尔浓度的 N2O 抑制了产甲烷菌的生长和主要产甲烷底物类别的 CH4 生成。估计占每年 10 亿吨生物源 CH4 的三分之二的乙酰基产甲烷作用对 N2O 最敏感,抑制常数(KI)在 18-25 μM 范围内,其次是氢营养型(KI,60-90 μM)和甲基营养型(KI,110-130 μM)产甲烷作用。在管理(即施肥土壤和废水处理厂)和非管理生态系统中,溶解的 N2O 浓度超过这些 KI 值的情况并不少见。未来的温室气体排放仍然不确定,特别是在经历前所未有的变暖的关键带环境(例如解冻的永久冻土)中,这些环境中储存着大量含氮和含碳物质。纳入相关的反馈效应,例如 N2O 对甲烷生成的显著抑制作用,可以改进气候模型并提高预测能力。