Friedrich Miescher Laboratory of the Max Planck Society , Max-Planck-Ring 9 , 72076 Tübingen , Germany.
Biochemistry. 2019 Jan 22;58(3):177-181. doi: 10.1021/acs.biochem.8b01150. Epub 2018 Dec 24.
Diffusion is essential for biochemical processes because it dominates molecular movement on small scales. Enzymatic reactions, for example, require fast exchange of substrate and product molecules in the local environment of the enzyme to ensure efficient turnover. On larger spatial scales, diffusion of secreted signaling proteins is thought to limit the spatial extent of tissue differentiation during embryonic development. While it is possible to measure diffusion in vivo, specifically interfering with diffusion processes and testing diffusion models directly remains challenging. The development of genetically encoded nanobodies that bind specific proteins has provided the opportunity to alter protein localization and reduce protein mobility. Here, we extend the nanobody toolbox with a membrane-tethered low-affinity diffusion regulator that can be used to tune the effective diffusivity of extracellular molecules over an order of magnitude in living embryos. This opens new avenues for future applications to functionally interfere with diffusion-dependent processes.
扩散对于生化过程至关重要,因为它主宰着小尺度上的分子运动。例如,酶反应需要在酶的局部环境中快速交换底物和产物分子,以确保有效的周转率。在更大的空间尺度上,分泌信号蛋白的扩散被认为限制了胚胎发育过程中组织分化的空间范围。虽然可以在体内测量扩散,但具体地干扰扩散过程并直接测试扩散模型仍然具有挑战性。编码与特定蛋白质结合的纳米抗体的发展为改变蛋白质定位和降低蛋白质迁移性提供了机会。在这里,我们通过将膜连接的低亲和力扩散调节剂与纳米抗体工具包扩展,该调节剂可用于在活胚胎中调节细胞外分子的有效扩散系数,调节幅度为一个数量级。这为未来应用开辟了新的途径,可以对依赖扩散的过程进行功能干扰。