Suppr超能文献

微创与再生治疗学。

Minimally Invasive and Regenerative Therapeutics.

机构信息

Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, 90095, CA, USA.

California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, 90095, CA, USA.

出版信息

Adv Mater. 2019 Jan;31(1):e1804041. doi: 10.1002/adma.201804041. Epub 2018 Nov 22.

Abstract

Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.

摘要

生物材料合成和制造、干细胞生物学、生物成像、微创手术程序和微尺度技术的进步使微创治疗成为再生医学中一种可行的工具。治疗方法,本文定义为细胞、生物材料、生物分子及其组合,可以以微创的方式递送到体内不同的组织,如骨骼、软骨、胰腺、心脏、骨骼肌、肝脏、皮肤和神经组织。使用纳米生物材料和软生物电子设备对治疗方法进行体内跟踪、感应和刺激的复杂方法为进一步发展微创和再生治疗方法(MIRET)提供了巨大的机会。一般来说,与传统的输送方法相比,微创输送方法具有高产量、低并发症风险和低成本的优点。本文综述了将再生治疗方法递送到体内的微创方法。描述了 MIRET 用于治疗不同组织和器官的情况。尽管已经进行了一些临床试验,但希望这些治疗方法能够得到更广泛的应用,以治疗患者。最后,强调了这一新兴领域的一些未来展望和挑战。

相似文献

1
Minimally Invasive and Regenerative Therapeutics.微创与再生治疗学。
Adv Mater. 2019 Jan;31(1):e1804041. doi: 10.1002/adma.201804041. Epub 2018 Nov 22.
2
Advances in Regenerative Medicine and Biomaterials.再生医学和生物材料的进展。
Methods Mol Biol. 2023;2575:127-152. doi: 10.1007/978-1-0716-2716-7_7.
4
Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.用于骨科再生工程的聚乳酸基生物材料。
Adv Drug Deliv Rev. 2016 Dec 15;107:247-276. doi: 10.1016/j.addr.2016.04.015. Epub 2016 Apr 25.
5
Decellularized scaffolds in regenerative medicine.再生医学中的脱细胞支架
Oncotarget. 2016 Sep 6;7(36):58671-58683. doi: 10.18632/oncotarget.10945.
6
Clinical Applications of Injectable Biomaterials.注射用生物材料的临床应用。
Adv Exp Med Biol. 2018;1077:163-182. doi: 10.1007/978-981-13-0947-2_10.
8
Regenerative Therapies for Spinal Cord Injury.脊髓损伤的再生治疗。
Tissue Eng Part B Rev. 2019 Dec;25(6):471-491. doi: 10.1089/ten.TEB.2019.0182. Epub 2019 Oct 23.

引用本文的文献

5
Engineering the Immune Response to Biomaterials.设计对生物材料的免疫反应。
Adv Sci (Weinh). 2025 May;12(19):e2414724. doi: 10.1002/advs.202414724. Epub 2025 Apr 15.
7
Magnetic Polymeric Conduits in Biomedical Applications.生物医学应用中的磁性聚合物导管
Micromachines (Basel). 2025 Jan 31;16(2):174. doi: 10.3390/mi16020174.

本文引用的文献

4
Electroactive polymers for tissue regeneration: Developments and perspectives.用于组织再生的电活性聚合物:进展与展望
Prog Polym Sci. 2018 Jun;81:144-162. doi: 10.1016/j.progpolymsci.2018.01.001. Epub 2018 May 7.
5
Smart scaffolds in tissue regeneration.组织再生中的智能支架
Regen Biomater. 2018 Jun;5(3):125-128. doi: 10.1093/rb/rby007. Epub 2018 Apr 17.
8
Cell therapy for intervertebral disc repair: Clinical perspective.用于椎间盘修复的细胞疗法:临床视角
J Orthop Translat. 2017 Feb 23;9:8-18. doi: 10.1016/j.jot.2017.02.002. eCollection 2017 Apr.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验