Suppr超能文献

微创与再生治疗学。

Minimally Invasive and Regenerative Therapeutics.

机构信息

Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, 90095, CA, USA.

California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, 90095, CA, USA.

出版信息

Adv Mater. 2019 Jan;31(1):e1804041. doi: 10.1002/adma.201804041. Epub 2018 Nov 22.

Abstract

Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.

摘要

生物材料合成和制造、干细胞生物学、生物成像、微创手术程序和微尺度技术的进步使微创治疗成为再生医学中一种可行的工具。治疗方法,本文定义为细胞、生物材料、生物分子及其组合,可以以微创的方式递送到体内不同的组织,如骨骼、软骨、胰腺、心脏、骨骼肌、肝脏、皮肤和神经组织。使用纳米生物材料和软生物电子设备对治疗方法进行体内跟踪、感应和刺激的复杂方法为进一步发展微创和再生治疗方法(MIRET)提供了巨大的机会。一般来说,与传统的输送方法相比,微创输送方法具有高产量、低并发症风险和低成本的优点。本文综述了将再生治疗方法递送到体内的微创方法。描述了 MIRET 用于治疗不同组织和器官的情况。尽管已经进行了一些临床试验,但希望这些治疗方法能够得到更广泛的应用,以治疗患者。最后,强调了这一新兴领域的一些未来展望和挑战。

相似文献

1
Minimally Invasive and Regenerative Therapeutics.
Adv Mater. 2019 Jan;31(1):e1804041. doi: 10.1002/adma.201804041. Epub 2018 Nov 22.
2
Advances in Regenerative Medicine and Biomaterials.
Methods Mol Biol. 2023;2575:127-152. doi: 10.1007/978-1-0716-2716-7_7.
3
The Potential Application of Biomaterials in Cardiac Stem Cell Therapy.
Curr Med Chem. 2016;23(6):589-602. doi: 10.2174/092986732306160303151041.
4
Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.
Adv Drug Deliv Rev. 2016 Dec 15;107:247-276. doi: 10.1016/j.addr.2016.04.015. Epub 2016 Apr 25.
5
Decellularized scaffolds in regenerative medicine.
Oncotarget. 2016 Sep 6;7(36):58671-58683. doi: 10.18632/oncotarget.10945.
6
Clinical Applications of Injectable Biomaterials.
Adv Exp Med Biol. 2018;1077:163-182. doi: 10.1007/978-981-13-0947-2_10.
8
Regenerative Therapies for Spinal Cord Injury.
Tissue Eng Part B Rev. 2019 Dec;25(6):471-491. doi: 10.1089/ten.TEB.2019.0182. Epub 2019 Oct 23.
9
Orthopedic tissue regeneration: cells, scaffolds, and small molecules.
Drug Deliv Transl Res. 2016 Apr;6(2):105-20. doi: 10.1007/s13346-015-0266-7.
10
Stem cell and biomaterials research in dental tissue engineering and regeneration.
Dent Clin North Am. 2012 Jul;56(3):495-520. doi: 10.1016/j.cden.2012.05.009.

引用本文的文献

1
The emerging role of biomaterial applications in cerebral lymphatic surgical interventions: A narrative review.
Biomater Biosyst. 2025 Aug 9;19:100117. doi: 10.1016/j.bbiosy.2025.100117. eCollection 2025 Sep.
2
The influence of soluble epoxide hydrolase inhibition and their PUFA-derived epoxides in osteoblast bone metabolism: an in vitro study.
Biochim Biophys Acta Mol Cell Biol Lipids. 2025 Oct;1870(7):159669. doi: 10.1016/j.bbalip.2025.159669. Epub 2025 Jul 31.
3
Advances in research on biomaterials and stem cell/exosome-based strategies in the treatment of traumatic brain injury.
Acta Pharm Sin B. 2025 Jul;15(7):3511-3544. doi: 10.1016/j.apsb.2025.05.010. Epub 2025 May 21.
4
Bottom-up Biomaterial strategies for creating tailored stem cells in regenerative medicine.
Front Bioeng Biotechnol. 2025 May 20;13:1581292. doi: 10.3389/fbioe.2025.1581292. eCollection 2025.
5
Engineering the Immune Response to Biomaterials.
Adv Sci (Weinh). 2025 May;12(19):e2414724. doi: 10.1002/advs.202414724. Epub 2025 Apr 15.
6
Injectable cellular vesicle-based bone meal for inflammatory bone defect repair through restoring immune homeostasis.
Theranostics. 2025 Mar 18;15(10):4465-4480. doi: 10.7150/thno.110795. eCollection 2025.
7
Magnetic Polymeric Conduits in Biomedical Applications.
Micromachines (Basel). 2025 Jan 31;16(2):174. doi: 10.3390/mi16020174.
8
Trans-Vessel Wall Cell Transplantation, Engraftment, and Tumor Access in the VX2 Rabbit Model.
Cell Transplant. 2025 Jan-Dec;34:9636897251313678. doi: 10.1177/09636897251313678.
10
Injectable hybrid nanofibrous spheres made of PLA and nano-hydroxyapatite for cell delivery and osteogenic induction.
Front Bioeng Biotechnol. 2024 Aug 29;12:1460870. doi: 10.3389/fbioe.2024.1460870. eCollection 2024.

本文引用的文献

1
Development of Flexible Cell-Loaded Ultrathin Ribbons for Minimally Invasive Delivery of Skeletal Muscle Cells.
ACS Biomater Sci Eng. 2017 Apr 10;3(4):579-589. doi: 10.1021/acsbiomaterials.6b00696. Epub 2017 Mar 27.
2
Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification.
Sci Robot. 2017 Mar 15;2(4). doi: 10.1126/scirobotics.aam6431. Epub 2017 Mar 1.
3
Electrospinning and electrospray of bio-based and natural polymers for biomaterials development.
Mater Sci Eng C Mater Biol Appl. 2018 Nov 1;92:969-982. doi: 10.1016/j.msec.2018.08.004. Epub 2018 Aug 3.
4
Electroactive polymers for tissue regeneration: Developments and perspectives.
Prog Polym Sci. 2018 Jun;81:144-162. doi: 10.1016/j.progpolymsci.2018.01.001. Epub 2018 May 7.
5
Smart scaffolds in tissue regeneration.
Regen Biomater. 2018 Jun;5(3):125-128. doi: 10.1093/rb/rby007. Epub 2018 Apr 17.
6
Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and PLGA microspheres for management of non-healing infected wounds.
Mater Sci Eng C Mater Biol Appl. 2018 Aug 1;89:213-222. doi: 10.1016/j.msec.2018.04.009. Epub 2018 Apr 11.
7
Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives.
J Orthop Translat. 2017 Apr 9;9:76-88. doi: 10.1016/j.jot.2017.03.005. eCollection 2017 Apr.
8
Cell therapy for intervertebral disc repair: Clinical perspective.
J Orthop Translat. 2017 Feb 23;9:8-18. doi: 10.1016/j.jot.2017.02.002. eCollection 2017 Apr.
9
Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis.
Curr Opin Pharmacol. 2018 Jun;40:74-80. doi: 10.1016/j.coph.2018.03.009. Epub 2018 Apr 3.
10
Using biomaterials to modulate chemotactic signaling for central nervous system repair.
Biomed Mater. 2018 Apr 27;13(4):044106. doi: 10.1088/1748-605X/aaad82.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验