Suppr超能文献

资源匮乏环境下人工智能在床旁超声中的应用:一项范围综述

Artificial Intelligence (AI) Applications for Point of Care Ultrasound (POCUS) in Low-Resource Settings: A Scoping Review.

作者信息

Kim Seungjun, Fischetti Chanel, Guy Megan, Hsu Edmund, Fox John, Young Sean D

机构信息

Department of Informatics, University of California, Irvine, CA 92697, USA.

Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.

出版信息

Diagnostics (Basel). 2024 Aug 1;14(15):1669. doi: 10.3390/diagnostics14151669.

Abstract

Advancements in artificial intelligence (AI) for point-of-care ultrasound (POCUS) have ushered in new possibilities for medical diagnostics in low-resource settings. This review explores the current landscape of AI applications in POCUS across these environments, analyzing studies sourced from three databases-SCOPUS, PUBMED, and Google Scholars. Initially, 1196 records were identified, of which 1167 articles were excluded after a two-stage screening, leaving 29 unique studies for review. The majority of studies focused on deep learning algorithms to facilitate POCUS operations and interpretation in resource-constrained settings. Various types of low-resource settings were targeted, with a significant emphasis on low- and middle-income countries (LMICs), rural/remote areas, and emergency contexts. Notable limitations identified include challenges in generalizability, dataset availability, regional disparities in research, patient compliance, and ethical considerations. Additionally, the lack of standardization in POCUS devices, protocols, and algorithms emerged as a significant barrier to AI implementation. The diversity of POCUS AI applications in different domains (e.g., lung, hip, heart, etc.) illustrates the challenges of having to tailor to the specific needs of each application. By separating out the analysis by application area, researchers will better understand the distinct impacts and limitations of AI, aligning research and development efforts with the unique characteristics of each clinical condition. Despite these challenges, POCUS AI systems show promise in bridging gaps in healthcare delivery by aiding clinicians in low-resource settings. Future research endeavors should prioritize addressing the gaps identified in this review to enhance the feasibility and effectiveness of POCUS AI applications to improve healthcare outcomes in resource-constrained environments.

摘要

用于床旁超声(POCUS)的人工智能(AI)进展为资源匮乏地区的医学诊断带来了新的可能性。本综述探讨了AI在这些环境中POCUS应用的现状,分析了来自三个数据库——Scopus、PubMed和谷歌学术搜索的研究。最初确定了1196条记录,经过两阶段筛选后排除了1167篇文章,剩下29项独特研究进行综述。大多数研究集中在深度学习算法,以促进资源受限环境中的POCUS操作和解读。研究针对了各种类型的资源匮乏环境,特别强调了低收入和中等收入国家(LMICs)、农村/偏远地区以及紧急情况。确定的显著局限性包括可推广性、数据集可用性、研究中的区域差异、患者依从性和伦理考量方面的挑战。此外,POCUS设备、协议和算法缺乏标准化成为AI实施的重大障碍。POCUS AI在不同领域(如肺、髋关节、心脏等)应用的多样性说明了必须针对每个应用的特定需求进行定制所面临的挑战。通过按应用领域分开分析,研究人员将更好地理解AI的不同影响和局限性,使研发工作与每种临床情况的独特特征相匹配。尽管存在这些挑战,POCUS AI系统在通过帮助资源匮乏环境中的临床医生弥补医疗服务差距方面显示出前景。未来的研究工作应优先解决本综述中确定的差距,以提高POCUS AI应用的可行性和有效性,从而改善资源受限环境中的医疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c50a/11312308/9953c8555715/diagnostics-14-01669-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验