Gilbert Charlie, Ellis Tom
Centre for Synthetic Biology , Imperial College London , London SW7 2AZ , U.K.
Department of Bioengineering , Imperial College London , London SW7 2AZ , U.K.
ACS Synth Biol. 2019 Jan 18;8(1):1-15. doi: 10.1021/acssynbio.8b00423. Epub 2019 Jan 9.
Natural biological materials exhibit remarkable properties: self-assembly from simple raw materials, precise control of morphology, diverse physical and chemical properties, self-repair, and the ability to sense-and-respond to environmental stimuli. Despite having found numerous uses in human industry and society, the utility of natural biological materials is limited. But, could it be possible to genetically program microbes to create entirely new and useful biological materials? At the intersection between microbiology, material science, and synthetic biology, the emerging field of biological engineered living materials (ELMs) aims to answer this question. Here we review recent efforts to program cells to produce living materials with novel functional properties, focusing on microbial systems that can be engineered to grow materials and on new genetic circuits for pattern formation that could be used to produce the more complex systems of the future.
能从简单原料进行自我组装、精确控制形态、具备多样的物理和化学性质、自我修复以及感知并响应环境刺激的能力。尽管天然生物材料在人类工业和社会中有诸多用途,但其效用仍有限。那么,是否有可能通过对微生物进行基因编程来创造全新且有用的生物材料呢?在微生物学、材料科学与合成生物学的交叉领域,新兴的生物工程活材料(ELMs)领域旨在回答这个问题。在此,我们回顾了近期为使细胞产生具有新型功能特性的活材料所做的努力,重点关注可被工程化用于生长材料的微生物系统以及用于图案形成的新遗传电路,这些遗传电路可用于构建未来更复杂的系统。