Suppr超能文献

用于脑机接口运动解码电路设计的比较指标与功率权衡

Comparison metrics and power trade-offs for BCI motor decoding circuit design.

作者信息

Saad Joe, Evans Adrian, Jaoui Ilan, Roux-Sibillon Victor, Hardy Emmanuel, Anghel Lorena

机构信息

Université Grenoble Alpes, CEA, LIST, Grenoble, France.

Université Grenoble Alpes, CEA, Leti, Grenoble, France.

出版信息

Front Hum Neurosci. 2025 Mar 12;19:1547074. doi: 10.3389/fnhum.2025.1547074. eCollection 2025.

Abstract

Brain signal decoders are increasingly being used in early clinical trials for rehabilitation and assistive applications such as motor control and speech decoding. As many Brain-Computer Interfaces (BCIs) need to be deployed in battery-powered or implantable devices, signal decoding must be performed using low-power circuits. This paper reviews existing hardware systems for BCIs, with a focus on motor decoding, to better understand the factors influencing the power and algorithmic performance of such systems. We propose metrics to compare the energy efficiency of a broad range of on-chip decoding systems covering Electroencephalography (EEG), Electrocorticography (ECoG), and Microelectrode Array (MEA) signals. Our analysis shows that achieving a given classification rate requires an Input Data Rate (IDR) that can be empirically estimated, a finding that is helpful for sizing new BCI systems. Counter-intuitively, our findings show a negative correlation between the power consumption per channel (PpC) and the Information Transfer Rate (ITR). This suggests that increasing the number of channels can simultaneously reduce the PpC through hardware sharing and increase the ITR by providing new input data. In fact, for EEG and ECoG decoding circuits, the power consumption is dominated by the complexity of signal processing. To better understand how to minimize this power consumption, we review the optimizations used in state-of-the-art decoding circuits.

摘要

脑信号解码器越来越多地应用于早期临床试验中的康复和辅助应用,如运动控制和语音解码。由于许多脑机接口(BCI)需要部署在电池供电或可植入设备中,因此信号解码必须使用低功耗电路来执行。本文回顾了现有的BCI硬件系统,重点是运动解码,以更好地理解影响此类系统功耗和算法性能的因素。我们提出了一些指标,用于比较涵盖脑电图(EEG)、皮层脑电图(ECoG)和微电极阵列(MEA)信号的各种片上解码系统的能源效率。我们的分析表明,要实现给定的分类率需要一个可以通过经验估计的输入数据速率(IDR),这一发现有助于确定新BCI系统的规模。与直觉相反,我们的研究结果表明每通道功耗(PpC)与信息传输速率(ITR)之间存在负相关。这表明增加通道数量可以通过硬件共享同时降低PpC,并通过提供新的输入数据提高ITR。事实上,对于EEG和ECoG解码电路,功耗主要由信号处理的复杂性决定。为了更好地理解如何将这种功耗降至最低,我们回顾了最先进的解码电路中使用的优化方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f6a/11936894/bc89fdd91fec/fnhum-19-1547074-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验