Nanophotonics and Advanced Materials Laboratory , Centro de Investigaciones en Optica , Apartado Postal 1-948, Leon , Guanajuato 37150 , Mexico.
Medical and Pharmaceutical Biotechnology Department , CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ, A.C.) , Guadalajara , Jalisco 44270 , Mexico.
Anal Chem. 2019 Feb 5;91(3):2100-2111. doi: 10.1021/acs.analchem.8b04523. Epub 2019 Jan 18.
Surface-enhanced Raman spectroscopy (SERS) has recently emerged as an innovative tool for therapeutic-drug monitoring (TDM), making it an ideal candidate for personalized treatment. Herein, we report a layer-by-layer (LbL) approach for the fabrication of a highly reproducible hybrid SERS substrate based on graphene oxide (GO)-supported l-cysteine-functionalized starlike gold nanoparticles (SAuNPs). These designed substrates were utilized for TDM of paclitaxel and cyclophosphamide in blood serum. The SAuNPs' efficient binding at the edges of GO creates a better SERS hotspot with enhanced Raman sensitivity because of the spacing of ∼2.28 nm between the SAuNPs. In addition, the hierarchically modified substrate with a self-assembled monolayer of zwitterionic amino acid l-cysteines acts like a brush layer to prevent SERS-hotspot blockages and fouling by blood-serum proteins. The antifouling nature of the substrate was determined quantitatively by a bichinchonic acid assay using bovine-serum albumin (BSA) as a protein model on the l-cysteine SAuNPs@GO hybrid substrate (the test) and a cysteamine SAuNPs@GO substrate (the control). The l-cysteine SAuNPs@GO hybrid exhibited 80.57% lower BSA fouling compared with that of the cysteamine SAuNPs@GO substrate. The SERS spectra were acquired within 20 s, with detection limits of 1.5 × 10 M for paclitaxel and 5 × 10 M for cyclophosphamide in blood serum. Such sensitivities are 4 times and 1 order of magnitude higher than the currently available sophisticated analytical techniques, which involve high costs with each analysis.
表面增强拉曼光谱(SERS)最近作为治疗药物监测(TDM)的创新工具出现,使其成为个性化治疗的理想选择。在此,我们报告了一种基于氧化石墨烯(GO)负载 l-半胱氨酸功能化星形金纳米粒子(SAuNPs)的高度重现性混合 SERS 基底的层层(LbL)方法。这些设计的基底用于血清中紫杉醇和环磷酰胺的 TDM。由于 SAuNPs 之间的间隔约为 2.28nm,SAuNPs 在 GO 边缘的有效结合产生了更好的 SERS 热点,并提高了拉曼灵敏度。此外,具有两性离子氨基酸 l-半胱氨酸自组装单层的分级修饰基底充当刷层,可防止 SERS 热点堵塞和血清蛋白污染。通过使用牛血清白蛋白(BSA)作为 l-半胱氨酸 SAuNPs@GO 杂化基底(测试)和半胱胺 SAuNPs@GO 基底(对照)上的蛋白质模型的双缩氨酸测定,定量确定了基底的抗污染性质。与半胱胺 SAuNPs@GO 基底相比,l-半胱氨酸 SAuNPs@GO 杂化基底的 BSA 污染率低 80.57%。在 20 秒内获得 SERS 光谱,在血清中检测到紫杉醇的检测限为 1.5×10 M,环磷酰胺的检测限为 5×10 M。这种灵敏度比目前可用的复杂分析技术高 4 倍和 1 个数量级,每次分析都需要高昂的成本。