Suppr超能文献

铁调素缺乏可预防动脉粥样硬化。

Hepcidin Deficiency Protects Against Atherosclerosis.

机构信息

From the Cardiovascular Research Center and Cardiology Division of the Department of Medicine (R.M., H.J.B., M.D.B., C.L.S., H.S., D.K.R., K.D.B.), Massachusetts General Hospital and Harvard Medical School, Boston.

the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (F.W., A.B., C.D.O., C.D.L., K.M.P., B.C., K.B.J., K.D.B., D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston.

出版信息

Arterioscler Thromb Vasc Biol. 2019 Feb;39(2):178-187. doi: 10.1161/ATVBAHA.118.312215.

Abstract

Objective- Inflammatory stimuli enhance the progression of atherosclerotic disease. Inflammation also increases the expression of hepcidin, a hormonal regulator of iron homeostasis, which decreases intestinal iron absorption, reduces serum iron levels and traps iron within macrophages. The role of macrophage iron in the development of atherosclerosis remains incompletely understood. The objective of this study was to investigate the effects of hepcidin deficiency and decreased macrophage iron on the development of atherosclerosis. Approach and Results- Hepcidin- and LDL (low-density lipoprotein) receptor-deficient ( Hamp/ Ldlr) mice and Hamp/ Ldlr control mice were fed a high-fat diet for 21 weeks. Compared with control mice, Hamp/ Ldlr mice had decreased aortic macrophage activity and atherosclerosis. Because hepcidin deficiency is associated with both increased serum iron and decreased macrophage iron, the possibility that increased serum iron was responsible for decreased atherosclerosis in Hamp/ Ldlr mice was considered. Hamp/ Ldlr mice were treated with iron dextran so as to produce a 2-fold increase in serum iron. Increased serum iron did not decrease atherosclerosis in Hamp/ Ldlr mice. Aortic macrophages from Hamp/ Ldlr mice had less labile free iron and exhibited a reduced proinflammatory (M1) phenotype compared with macrophages from Hamp/ Ldlr mice. THP1 human macrophages treated with an iron chelator were used to model hepcidin deficiency in vitro. Treatment with an iron chelator reduced LPS (lipopolysaccharide)-induced M1 phenotypic expression and decreased uptake of oxidized LDL. Conclusions- In summary, in a hyperlipidemic mouse model, hepcidin deficiency was associated with decreased macrophage iron, a reduced aortic macrophage inflammatory phenotype and protection from atherosclerosis. The results indicate that decreasing hepcidin activity, with the resulting decrease in macrophage iron, may prove to be a novel strategy for the treatment of atherosclerosis.

摘要

目的-炎症刺激可促进动脉粥样硬化疾病的进展。炎症还会增加铁稳态激素调节因子铁调素的表达,从而减少肠道铁吸收,降低血清铁水平,并使铁滞留在巨噬细胞内。巨噬细胞铁在动脉粥样硬化发展中的作用尚不完全清楚。本研究旨在探讨铁调素缺乏和巨噬细胞铁减少对动脉粥样硬化形成的影响。

方法和结果-铁调素缺失和 LDL 受体缺失(Hamp/Ldlr)小鼠和 Hamp/Ldlr 对照组小鼠喂食高脂肪饮食 21 周。与对照组小鼠相比,Hamp/Ldlr 小鼠的主动脉巨噬细胞活性和动脉粥样硬化程度降低。由于铁调素缺乏与血清铁增加和巨噬细胞铁减少有关,因此考虑血清铁增加是否是 Hamp/Ldlr 小鼠动脉粥样硬化减少的原因。用右旋糖酐铁处理 Hamp/Ldlr 小鼠,使血清铁增加 2 倍。增加血清铁并没有降低 Hamp/Ldlr 小鼠的动脉粥样硬化程度。与 Hamp/Ldlr 小鼠的巨噬细胞相比,Hamp/Ldlr 小鼠的主动脉巨噬细胞的不稳定游离铁较少,且表现出较少的促炎(M1)表型。用铁螯合剂处理 THP1 人巨噬细胞,模拟体外铁调素缺乏。用铁螯合剂处理可降低 LPS(脂多糖)诱导的 M1 表型表达,并减少氧化型 LDL 的摄取。

结论-总之,在高脂血症小鼠模型中,铁调素缺乏与巨噬细胞铁减少、主动脉巨噬细胞炎症表型减少和动脉粥样硬化保护有关。结果表明,降低铁调素活性,导致巨噬细胞铁减少,可能成为治疗动脉粥样硬化的一种新策略。

相似文献

1
Hepcidin Deficiency Protects Against Atherosclerosis.
Arterioscler Thromb Vasc Biol. 2019 Feb;39(2):178-187. doi: 10.1161/ATVBAHA.118.312215.
2
Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis.
Circ Res. 2015 Feb 27;116(5):789-96. doi: 10.1161/CIRCRESAHA.116.305811. Epub 2015 Jan 15.
3
Hepcidin-ferroportin axis controls toll-like receptor 4 dependent macrophage inflammatory responses in human atherosclerotic plaques.
Atherosclerosis. 2015 Aug;241(2):692-700. doi: 10.1016/j.atherosclerosis.2015.06.025. Epub 2015 Jun 19.
5
Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice.
Arterioscler Thromb Vasc Biol. 2006 Oct;26(10):2295-300. doi: 10.1161/01.ATV.0000237629.29842.4c. Epub 2006 Jul 20.
6
Regulation of iron metabolism in Hamp (-/-) mice in response to iron-deficient diet.
Eur J Nutr. 2013 Feb;52(1):135-43. doi: 10.1007/s00394-011-0295-z. Epub 2012 Jan 13.
7
9
Iron gene expression profile in atherogenic Mox macrophages.
Biochim Biophys Acta. 2016 Jun;1862(6):1137-46. doi: 10.1016/j.bbadis.2016.03.004. Epub 2016 Mar 10.

引用本文的文献

1
2
Clinical associations and potential cellular mechanisms linking G6PD deficiency and atherosclerotic cardiovascular disease.
NPJ Metab Health Dis. 2025;3(1):16. doi: 10.1038/s44324-025-00061-6. Epub 2025 Apr 24.
4
The Role of Iron in Atherosclerosis and its Association with Related Diseases.
Curr Atheroscler Rep. 2024 Nov 9;27(1):1. doi: 10.1007/s11883-024-01251-1.
5
Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects.
Signal Transduct Target Ther. 2024 Oct 14;9(1):271. doi: 10.1038/s41392-024-01969-z.
7
Focus on Cellular Iron Metabolism in Aortic Disease.
Rev Cardiovasc Med. 2022 May 11;23(5):169. doi: 10.31083/j.rcm2305169. eCollection 2022 May.
8
Functional Roles of Furin in Cardio-Cerebrovascular Diseases.
ACS Pharmacol Transl Sci. 2024 Feb 7;7(3):570-585. doi: 10.1021/acsptsci.3c00325. eCollection 2024 Mar 8.
10
Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications.
Front Endocrinol (Lausanne). 2024 Jan 8;14:1248934. doi: 10.3389/fendo.2023.1248934. eCollection 2023.

本文引用的文献

1
CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis.
J Clin Invest. 2018 Mar 1;128(3):1106-1124. doi: 10.1172/JCI93025. Epub 2018 Feb 19.
2
Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies-Statement From ATVB Council.
Arterioscler Thromb Vasc Biol. 2018 Feb;38(2):292-303. doi: 10.1161/ATVBAHA.117.309524. Epub 2018 Jan 4.
3
Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association.
Arterioscler Thromb Vasc Biol. 2017 Sep;37(9):e131-e157. doi: 10.1161/ATV.0000000000000062. Epub 2017 Jul 20.
4
The Effect of Iron Status on Risk of Coronary Artery Disease: A Mendelian Randomization Study-Brief Report.
Arterioscler Thromb Vasc Biol. 2017 Sep;37(9):1788-1792. doi: 10.1161/ATVBAHA.117.309757. Epub 2017 Jul 6.
5
Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis.
Eur J Pharmacol. 2017 Dec 5;816:107-115. doi: 10.1016/j.ejphar.2017.04.028. Epub 2017 Apr 21.
6
Linking Hemorrhage, Angiogenesis, Macrophages, and Iron Metabolism in Atherosclerotic Vascular Diseases.
Arterioscler Thromb Vasc Biol. 2017 Apr;37(4):e33-e39. doi: 10.1161/ATVBAHA.117.309045.
7
A Red Carpet for Iron Metabolism.
Cell. 2017 Jan 26;168(3):344-361. doi: 10.1016/j.cell.2016.12.034.
8
Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species.
Immunity. 2016 Sep 20;45(3):669-684. doi: 10.1016/j.immuni.2016.08.015. Epub 2016 Sep 13.
9
Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis.
Biomed Res Int. 2016;2016:9582430. doi: 10.1155/2016/9582430. Epub 2016 Jul 17.
10
Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis.
Circ Res. 2016 Feb 19;118(4):620-36. doi: 10.1161/CIRCRESAHA.115.306301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验