Center for Theoretical Biological Physics, Rice University, Houston, TX 77005.
Department of Chemistry, Rice University, Houston, TX 77005.
Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):148-157. doi: 10.1073/pnas.1815345116. Epub 2018 Dec 26.
The epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation are two paramount processes driving tumor progression, therapy resistance, and cancer metastasis. Recent experiments show that cells with varying EMT and CSC phenotypes are spatially segregated in the primary tumor. The underlying mechanisms generating such spatiotemporal dynamics in the tumor microenvironment, however, remain largely unexplored. Here, we show through a mechanism-based dynamical model that the diffusion of EMT-inducing signals such as TGF-β, together with noncell autonomous control of EMT and CSC decision making via the Notch signaling pathway, can explain experimentally observed disparate localization of subsets of CSCs with varying EMT phenotypes in the tumor. Our simulations show that the more mesenchymal CSCs lie at the invasive edge, while the hybrid epithelial/mesenchymal (E/M) CSCs reside in the tumor interior. Further, motivated by the role of Notch-Jagged signaling in mediating EMT and stemness, we investigated the microenvironmental factors that promote Notch-Jagged signaling. We show that many inflammatory cytokines such as IL-6 that can promote Notch-Jagged signaling can () stabilize a hybrid E/M phenotype, () increase the likelihood of spatial proximity of hybrid E/M cells, and () expand the fraction of CSCs. To validate the predicted connection between Notch-Jagged signaling and stemness, we knocked down JAG1 in hybrid E/M SUM149 human breast cancer cells in vitro. JAG1 knockdown significantly restricted tumor organoid formation, confirming the key role that Notch-Jagged signaling can play in tumor progression. Together, our integrated computational-experimental framework reveals the underlying principles of spatiotemporal dynamics of EMT and CSCs.
上皮-间充质转化 (EMT) 和癌症干细胞 (CSC) 的形成是推动肿瘤进展、治疗抵抗和癌症转移的两个至关重要的过程。最近的实验表明,具有不同 EMT 和 CSC 表型的细胞在原发性肿瘤中空间上是分离的。然而,产生肿瘤微环境中这种时空动力学的潜在机制在很大程度上仍未得到探索。在这里,我们通过一个基于机制的动力学模型表明,EMT 诱导信号(如 TGF-β)的扩散,以及通过 Notch 信号通路对 EMT 和 CSC 决策的非细胞自主控制,可以解释实验观察到的具有不同 EMT 表型的 CSC 亚群在肿瘤中的不同定位。我们的模拟表明,更间质的 CSC 位于侵袭边缘,而混合上皮/间充质 (E/M) 的 CSC 位于肿瘤内部。此外,受 Notch-Jagged 信号在介导 EMT 和干细胞特性中的作用的启发,我们研究了促进 Notch-Jagged 信号的微环境因素。我们表明,许多炎症细胞因子,如 IL-6,它可以促进 Notch-Jagged 信号,可以 () 稳定混合 E/M 表型,() 增加混合 E/M 细胞空间接近的可能性,和 () 扩大 CSC 的比例。为了验证 Notch-Jagged 信号和干细胞特性之间的预测联系,我们在体外敲低混合 E/M SUM149 人乳腺癌细胞中的 JAG1。JAG1 的敲低显著限制了肿瘤类器官的形成,证实了 Notch-Jagged 信号在肿瘤进展中可以发挥的关键作用。总之,我们的集成计算实验框架揭示了 EMT 和 CSC 时空动力学的潜在原则。