Suppr超能文献

一种优化动脉自旋标记 MRI 实验的通用框架。

A general framework for optimizing arterial spin labeling MRI experiments.

机构信息

Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.

Institute of Biomedical Engineering, Department of Engineering, University of Oxford, Oxford, United Kingdom.

出版信息

Magn Reson Med. 2019 Apr;81(4):2474-2488. doi: 10.1002/mrm.27580. Epub 2018 Dec 26.

Abstract

PURPOSE

Arterial spin labeling (ASL) MRI is a non-invasive perfusion imaging technique that is inherently SNR limited, so scan protocols ideally need to be rigorously optimized to provide the most accurate measurements. A general framework is presented for optimizing ASL experiments to achieve optimal accuracy for perfusion estimates and, if required, other hemodynamic parameters, within a fixed scan time. The effectiveness of this framework is then demonstrated by optimizing the post-labeling delays (PLDs) of a multi-PLD pseudo-continuous ASL experiment and validating the improvement using simulations and in vivo data.

THEORY AND METHODS

A simple framework is proposed based on the use of the Cramér-Rao lower bound to find the protocol design which minimizes the predicted parameter estimation errors. Protocols were optimized for cerebral blood flow (CBF) accuracy or both CBF and arterial transit time (ATT) accuracy and compared to a conventional multi-PLD protocol, with evenly spaced PLDs, and a single-PLD protocol, using simulations and in vivo experiments in healthy volunteers.

RESULTS

Simulations and in vivo data agreed extremely well with the predicted performance of all protocols. For the in vivo experiments, optimizing for just CBF resulted in a 48% and 15% decrease in CBF errors, relative to the reference multi-PLD and single-PLD protocols, respectively. Optimizing for both CBF and ATT reduced CBF errors by 37%, without a reduction in ATT accuracy, relative to the reference multi-PLD protocol.

CONCLUSION

The presented framework can effectively design ASL experiments to minimize measurement errors based on the requirements of the scan.

摘要

目的

动脉自旋标记(ASL)MRI 是一种非侵入性灌注成像技术,固有地受到 SNR 限制,因此扫描方案理想情况下需要严格优化,以提供最准确的测量。本文提出了一种通用框架,用于优化 ASL 实验,以在固定扫描时间内实现灌注估计的最佳准确性,并在需要时实现其他血流动力学参数的最佳准确性。然后,通过优化多-PLD 伪连续 ASL 实验的标记后延迟(PLD)并使用模拟和体内数据验证改进,证明了该框架的有效性。

理论和方法

本文提出了一种简单的框架,基于使用克拉美-罗下限来找到最小化预测参数估计误差的协议设计。根据模拟和健康志愿者的体内实验,对用于脑血流量(CBF)准确性或 CBF 和动脉渡越时间(ATT)准确性的协议进行了优化,并与传统的多-PLD 协议(具有均匀间隔的 PLD)和单-PLD 协议进行了比较。

结果

模拟和体内数据与所有协议的预测性能非常吻合。对于体内实验,仅优化 CBF 相对于参考多-PLD 和单-PLD 协议,分别使 CBF 误差降低了 48%和 15%。同时优化 CBF 和 ATT 可使 CBF 误差降低 37%,而不会降低 ATT 准确性,相对于参考多-PLD 协议。

结论

所提出的框架可以根据扫描要求有效地设计 ASL 实验,以最小化测量误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e69a/6492260/05254432889a/MRM-81-2474-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验