Suppr超能文献

TFS 和 Spt4/5 通过基于古菌组蛋白的染色质加速转录。

TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin.

机构信息

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.

Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.

出版信息

Mol Microbiol. 2019 Mar;111(3):784-797. doi: 10.1111/mmi.14191. Epub 2019 Feb 1.

Abstract

RNA polymerase must surmount translocation barriers for continued transcription. In Eukarya and most Archaea, DNA-bound histone proteins represent the most common and troublesome barrier to transcription elongation. Eukaryotes encode a plethora of chromatin-remodeling complexes, histone-modification enzymes and transcription elongation factors to aid transcription through nucleosomes, while archaea seemingly lack machinery to remodel/modify histone-based chromatin and thus must rely on elongation factors to accelerate transcription through chromatin-barriers. TFS (TFIIS in Eukarya) and the Spt4-Spt5 complex are universally encoded in archaeal genomes, and here we demonstrate that both elongation factors, via different mechanisms, can accelerate transcription through archaeal histone-based chromatin. Histone proteins in Thermococcus kodakarensis are sufficiently abundant to completely wrap all genomic DNA, resulting in a consistent protein barrier to transcription elongation. TFS-enhanced cleavage of RNAs in backtracked transcription complexes reactivates stalled RNAPs and dramatically accelerates transcription through histone-barriers, while Spt4-Spt5 changes to clamp-domain dynamics play a lesser-role in stabilizing transcription. Repeated attempts to delete TFS, Spt4 and Spt5 from the T. kodakarensis genome were not successful, and the essentiality of both conserved transcription elongation factors suggests that both conserved elongation factors play important roles in transcription regulation in vivo, including mechanisms to accelerate transcription through downstream protein barriers.

摘要

RNA 聚合酶必须克服转录延伸的迁移障碍。在真核生物和大多数古菌中,与 DNA 结合的组蛋白代表了转录延伸最常见和最麻烦的障碍。真核生物编码了大量的染色质重塑复合物、组蛋白修饰酶和转录延伸因子,以帮助转录通过核小体,而古菌似乎缺乏重塑/修饰基于组蛋白的染色质的机制,因此必须依赖延伸因子来加速通过染色质障碍的转录。TFS(真核生物中的 TFIIS)和 Spt4-Spt5 复合物在古菌基因组中普遍编码,在这里我们证明这两种延伸因子都可以通过不同的机制加速通过古菌组蛋白染色质的转录。Thermococcus kodakarensis 中的组蛋白蛋白足够丰富,可以完全包裹所有基因组 DNA,从而导致转录延伸的一致蛋白障碍。TFS 增强了回溯转录复合物中 RNA 的切割,重新激活了停滞的 RNA 聚合酶,并极大地加速了通过组蛋白障碍的转录,而 Spt4-Spt5 向夹钳结构域动力学的变化在稳定转录中作用较小。多次试图从 T. kodakarensis 基因组中删除 TFS、Spt4 和 Spt5 都没有成功,这两种保守转录延伸因子的必要性表明,这两种保守的延伸因子在体内转录调控中都发挥着重要作用,包括通过下游蛋白质障碍加速转录的机制。

相似文献

1
TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin.
Mol Microbiol. 2019 Mar;111(3):784-797. doi: 10.1111/mmi.14191. Epub 2019 Feb 1.
2
Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.
Nucleic Acids Res. 2024 Jun 10;52(10):6017-6035. doi: 10.1093/nar/gkae282.
3
Archaeal histone-based chromatin structures regulate transcription elongation rates.
Commun Biol. 2024 Feb 27;7(1):236. doi: 10.1038/s42003-024-05928-w.
4
Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription.
Genetics. 2010 Feb;184(2):321-34. doi: 10.1534/genetics.109.111526. Epub 2009 Nov 30.
6
An archaeal histone is required for transformation of Thermococcus kodakarensis.
J Bacteriol. 2012 Dec;194(24):6864-74. doi: 10.1128/JB.01523-12. Epub 2012 Oct 12.
8
The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation.
Biochim Biophys Acta. 2013 Jan;1829(1):105-15. doi: 10.1016/j.bbagrm.2012.08.007. Epub 2012 Sep 6.
9
An alternative beads-on-a-string chromatin architecture in Thermococcus kodakarensis.
EMBO Rep. 2013 Aug;14(8):711-7. doi: 10.1038/embor.2013.94. Epub 2013 Jul 9.

引用本文的文献

1
NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression.
J Mol Biol. 2025 Jan 1;437(1):168814. doi: 10.1016/j.jmb.2024.168814. Epub 2024 Oct 5.
2
Chromatin and gene regulation in archaea.
Mol Microbiol. 2025 Mar;123(3):218-231. doi: 10.1111/mmi.15302. Epub 2024 Aug 3.
3
Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.
Nucleic Acids Res. 2024 Jun 10;52(10):6017-6035. doi: 10.1093/nar/gkae282.
4
Archaeal histone-based chromatin structures regulate transcription elongation rates.
Commun Biol. 2024 Feb 27;7(1):236. doi: 10.1038/s42003-024-05928-w.
5
DNA-bridging by an archaeal histone variant via a unique tetramerisation interface.
Commun Biol. 2023 Sep 22;6(1):968. doi: 10.1038/s42003-023-05348-2.
6
Histones direct site-specific CRISPR spacer acquisition in model archaeon.
Nat Microbiol. 2023 Sep;8(9):1682-1694. doi: 10.1038/s41564-023-01446-3. Epub 2023 Aug 7.
7
The structure and activities of the archaeal transcription termination factor Eta detail vulnerabilities of the transcription elongation complex.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2207581119. doi: 10.1073/pnas.2207581119. Epub 2022 Aug 2.
8
The pleiotropic roles of SPT5 in transcription.
Transcription. 2022 Feb-Jun;13(1-3):53-69. doi: 10.1080/21541264.2022.2103366. Epub 2022 Jul 25.
10
Positive supercoiling favors transcription elongation through lac repressor-mediated DNA loops.
Nucleic Acids Res. 2022 Mar 21;50(5):2826-2835. doi: 10.1093/nar/gkac093.

本文引用的文献

1
Structural basis of the nucleosome transition during RNA polymerase II passage.
Science. 2018 Nov 2;362(6414):595-598. doi: 10.1126/science.aau9904. Epub 2018 Oct 4.
2
Structure of activated transcription complex Pol II-DSIF-PAF-SPT6.
Nature. 2018 Aug;560(7720):607-612. doi: 10.1038/s41586-018-0440-4. Epub 2018 Aug 22.
4
Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators.
Cell. 2018 Jun 14;173(7):1650-1662.e14. doi: 10.1016/j.cell.2018.05.017. Epub 2018 Jun 7.
6
Archaeal DNA on the histone merry-go-round.
FEBS J. 2018 Sep;285(17):3168-3174. doi: 10.1111/febs.14495. Epub 2018 Jun 15.
7
Markerless Gene Editing in the Hyperthermophilic Archaeon .
Bio Protoc. 2017 Nov 20;7(22). doi: 10.21769/BioProtoc.2604.
8
The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor.
Nat Commun. 2017 Dec 4;8(1):1914. doi: 10.1038/s41467-017-02081-3.
9
Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp.
Nat Struct Mol Biol. 2017 Oct;24(10):809-815. doi: 10.1038/nsmb.3465. Epub 2017 Sep 11.
10
Emerging Insights into the Roles of the Paf1 Complex in Gene Regulation.
Trends Biochem Sci. 2017 Oct;42(10):788-798. doi: 10.1016/j.tibs.2017.08.003. Epub 2017 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验