Suppr超能文献

动态离子对行为稳定蛋白质中的单 α-螺旋。

Dynamic ion pair behavior stabilizes single α-helices in proteins.

机构信息

From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and.

the School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.

出版信息

J Biol Chem. 2019 Mar 1;294(9):3219-3234. doi: 10.1074/jbc.RA118.006752. Epub 2018 Dec 28.

Abstract

Ion pairs are key stabilizing interactions between oppositely charged amino acid side chains in proteins. They are often depicted as single conformer salt bridges (hydrogen-bonded ion pairs) in crystal structures, but it is unclear how dynamic they are in solution. Ion pairs are thought to be particularly important in stabilizing single α-helix (SAH) domains in solution. These highly stable domains are rich in charged residues (such as Arg, Lys, and Glu) with potential ion pairs across adjacent turns of the helix. They provide a good model system to investigate how ion pairs can contribute to protein stability. Using NMR spectroscopy, small-angle X-ray light scattering (SAXS), and molecular dynamics simulations, we provide here experimental evidence that ion pairs exist in a SAH in murine myosin 7a (residues 858-935), but that they are not fixed or long lasting. modeling revealed that the ion pairs within this α-helix exhibit dynamic behavior, rapidly forming and breaking and alternating between different partner residues. The low-energy helical state was compatible with a great variety of ion pair combinations. Flexible ion pair formation utilizing a subset of those available at any one time avoided the entropic penalty of fixing side chain conformations, which likely contributed to helix stability overall. These results indicate the dynamic nature of ion pairs in SAHs. More broadly, thermodynamic stability in other proteins is likely to benefit from the dynamic behavior of multi-option solvent-exposed ion pairs.

摘要

离子对是蛋白质中带相反电荷的氨基酸侧链之间的关键稳定相互作用。它们在晶体结构中通常被描绘为单一构象盐桥(氢键结合的离子对),但在溶液中它们的动态性尚不清楚。离子对被认为在稳定溶液中单α-螺旋(SAH)结构域方面特别重要。这些高度稳定的结构域富含带电荷的残基(如 Arg、Lys 和 Glu),在螺旋的相邻转弯处具有潜在的离子对。它们提供了一个很好的模型系统来研究离子对如何有助于蛋白质稳定性。使用 NMR 光谱、小角度 X 射线散射(SAXS)和分子动力学模拟,我们在这里提供了实验证据,证明离子对存在于鼠肌球蛋白 7a(残基 858-935)的 SAH 中,但它们不是固定的或持久的。建模表明,该α-螺旋内的离子对表现出动态行为,快速形成和断裂,并在不同的伴侣残基之间交替。低能量的螺旋状态与各种离子对组合兼容。利用任何时候可用的子集形成灵活的离子对,避免了固定侧链构象的熵罚,这可能有助于整体螺旋稳定性。这些结果表明了 SAH 中离子对的动态性质。更广泛地说,其他蛋白质的热力学稳定性可能受益于多选项溶剂暴露离子对的动态行为。

相似文献

1
Dynamic ion pair behavior stabilizes single α-helices in proteins.
J Biol Chem. 2019 Mar 1;294(9):3219-3234. doi: 10.1074/jbc.RA118.006752. Epub 2018 Dec 28.
2
Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
Biophys J. 2016 Jun 7;110(11):2328-2341. doi: 10.1016/j.bpj.2016.04.015.
4
Stable single α-helices are constant force springs in proteins.
J Biol Chem. 2014 Oct 3;289(40):27825-35. doi: 10.1074/jbc.M114.585679. Epub 2014 Aug 13.
6
Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design.
Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898-902. doi: 10.1073/pnas.84.24.8898.
7
Relationship between ion pair geometries and electrostatic strengths in proteins.
Biophys J. 2002 Sep;83(3):1595-612. doi: 10.1016/S0006-3495(02)73929-5.
8
Modulating the Stiffness of the Myosin VI Single α-Helical Domain.
Biophys J. 2020 Mar 10;118(5):1119-1128. doi: 10.1016/j.bpj.2020.01.003. Epub 2020 Jan 15.
10
Remarkable Rigidity of the Single α-Helical Domain of Myosin-VI As Revealed by NMR Spectroscopy.
J Am Chem Soc. 2019 Jun 5;141(22):9004-9017. doi: 10.1021/jacs.9b03116. Epub 2019 May 23.

引用本文的文献

3
and analyses of a novel variant in 6 identified in a family with postlingual non-syndromic hearing loss from Argentina.
NAR Genom Bioinform. 2024 Dec 11;6(4):lqae162. doi: 10.1093/nargab/lqae162. eCollection 2024 Dec.
5
Inhibition of Aurora-A/N-Myc Protein-Protein Interaction Using Peptidomimetics: Understanding the Role of Peptide Cyclization.
Chembiochem. 2024 Jan 15;25(2):e202300649. doi: 10.1002/cbic.202300649. Epub 2023 Nov 27.
7
Generalized Born Implicit Solvent Models Do Not Reproduce Secondary Structures of Designed Glu/Lys Peptides.
J Chem Theory Comput. 2022 Jul 12;18(7):4070-4076. doi: 10.1021/acs.jctc.1c01172. Epub 2022 Jun 10.
9
ER/K-link-Leveraging a native protein linker to probe dynamic cellular interactions.
Methods Enzymol. 2021;647:173-208. doi: 10.1016/bs.mie.2020.10.002. Epub 2020 Nov 18.
10
Modulating the Stiffness of the Myosin VI Single α-Helical Domain.
Biophys J. 2020 Mar 10;118(5):1119-1128. doi: 10.1016/j.bpj.2020.01.003. Epub 2020 Jan 15.

本文引用的文献

1
How well do force fields capture the strength of salt bridges in proteins?
PeerJ. 2018 Jun 11;6:e4967. doi: 10.7717/peerj.4967. eCollection 2018.
2
A C-detected N double-quantum NMR experiment to probe arginine side-chain guanidinium N chemical shifts.
J Biomol NMR. 2017 Nov;69(3):123-132. doi: 10.1007/s10858-017-0137-2. Epub 2017 Nov 10.
3
Internal Motions of Basic Side Chains of the Antennapedia Homeodomain in the Free and DNA-Bound States.
Biochemistry. 2017 Nov 7;56(44):5866-5869. doi: 10.1021/acs.biochem.7b00885.
4
Comprehensive analysis of NMR data using advanced line shape fitting.
J Biomol NMR. 2017 Oct;69(2):93-99. doi: 10.1007/s10858-017-0141-6. Epub 2017 Oct 17.
5
Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR.
Chem Commun (Camb). 2017 Sep 16;53(72):10062-10065. doi: 10.1039/c7cc04821a. Epub 2017 Aug 25.
6
Distribution and evolution of stable single α-helices (SAH domains) in myosin motor proteins.
PLoS One. 2017 Apr 3;12(4):e0174639. doi: 10.1371/journal.pone.0174639. eCollection 2017.
8
Ca-Induced Rigidity Change of the Myosin VIIa IQ Motif-Single α Helix Lever Arm Extension.
Structure. 2017 Apr 4;25(4):579-591.e4. doi: 10.1016/j.str.2017.02.002. Epub 2017 Mar 2.
9
Unambiguous Determination of Protein Arginine Ionization States in Solution by NMR Spectroscopy.
Angew Chem Int Ed Engl. 2017 Jan 2;56(1):239-242. doi: 10.1002/anie.201609605. Epub 2016 Nov 29.
10
Scaffolding in the Spliceosome via Single α Helices.
Structure. 2016 Nov 1;24(11):1972-1983. doi: 10.1016/j.str.2016.09.007. Epub 2016 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验