Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430, Jalisco, México.
Facultad de Telemática, Universidad de Colima, 28040, México
G3 (Bethesda). 2020 Nov 5;10(11):4083-4102. doi: 10.1534/g3.120.401733.
Due to the ever-increasing data collected in genomic breeding programs, there is a need for genomic prediction models that can deal better with big data. For this reason, here we propose a Maximum Threshold Genomic Prediction (MAPT) model for ordinal traits that is more efficient than the conventional Bayesian Threshold Genomic Prediction model for ordinal traits. The MAPT performs the predictions of the Threshold Genomic Prediction model by using the maximum estimation of the parameters, that is, the values of the parameters that maximize the joint posterior density. We compared the prediction performance of the proposed MAPT to the conventional Bayesian Threshold Genomic Prediction model, the multinomial Ridge regression and support vector machine on 8 real data sets. We found that the proposed MAPT was competitive with regard to the multinomial and support vector machine models in terms of prediction performance, and slightly better than the conventional Bayesian Threshold Genomic Prediction model. With regard to the implementation time, we found that in general the MAPT and the support vector machine were the best, while the slowest was the multinomial Ridge regression model. However, it is important to point out that the successful implementation of the proposed MAPT model depends on the informative priors used to avoid underestimation of variance components.
由于基因组育种计划中收集的数据不断增加,因此需要能够更好地处理大数据的基因组预测模型。出于这个原因,我们在这里提出了一种用于有序性状的最大阈值基因组预测(MAPT)模型,该模型比传统的贝叶斯阈值基因组预测模型更有效。MAPT 通过使用参数的最大估计值(即最大化联合后验密度的参数值)来执行阈值基因组预测模型的预测。我们将所提出的 MAPT 的预测性能与传统的贝叶斯阈值基因组预测模型、多项岭回归和支持向量机在 8 个真实数据集上进行了比较。我们发现,在所考虑的预测性能方面,所提出的 MAPT 与多项和支持向量机模型相当,略优于传统的贝叶斯阈值基因组预测模型。关于实现时间,我们发现一般来说,MAPT 和支持向量机是最好的,而多项岭回归模型最慢。然而,需要指出的是,成功实施所提出的 MAPT 模型取决于使用的信息先验,以避免方差分量的低估。