School of Biological Sciences, University of Utah, Salt Lake City, UT 841120.
Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5494-5501. doi: 10.1073/pnas.1911382117. Epub 2020 Feb 20.
Somatosensory neurons have historically been classified by a variety of approaches, including structural, anatomical, and genetic markers; electrophysiological properties; pharmacological sensitivities; and more recently, transcriptional profile differentiation. These methodologies, used separately, have yielded inconsistent classification schemes. Here, we describe phenotypic differences in response to pharmacological agents as measured by changes in cytosolic calcium concentration for the rapid classification of neurons in vitro; further analysis with genetic markers, whole-cell recordings, and single-cell transcriptomics validated these findings in a functional context. Using this general approach, which we refer to as tripartite constellation analysis (TCA), we focused on large-diameter dorsal-root ganglion (L-DRG) neurons with myelinated axons. Divergent responses to the K-channel antagonist, κM-conopeptide RIIIJ (RIIIJ), reliably identified six discrete functional cell classes. In two neuronal subclasses (L1 and L2), block with RIIIJ led to an increase in [Ca] Simultaneous electrophysiology and calcium imaging showed that the RIIIJ-elicited increase in [Ca] corresponded to different patterns of action potentials (APs), a train of APs in L1 neurons, and sporadic firing in L2 neurons. Genetically labeled mice established that L1 neurons are proprioceptors. The single-cell transcriptomes of L1 and L2 neurons showed that L2 neurons are Aδ-low-threshold mechanoreceptors. RIIIJ effects were replicated by application of the K1.1 selective antagonist, Dendrotoxin-K, in several L-DRG subclasses (L1, L2, L3, and L5), suggesting the presence of functional K1.1/K1.2 heteromeric channels. Using this approach on other neuronal subclasses should ultimately accelerate the comprehensive classification and characterization of individual somatosensory neuronal subclasses within a mixed population.
感觉神经元的分类方法多种多样,包括结构、解剖和遗传标记;电生理特性;药物敏感性;以及最近的转录谱分化。这些方法单独使用时,产生的分类方案并不一致。在这里,我们描述了通过测量细胞溶质钙浓度变化来快速对体外神经元进行药物反应的表型差异;使用遗传标记、全细胞记录和单细胞转录组学进行进一步分析,在功能背景下验证了这些发现。我们使用这种通用方法,称为三分组合分析(TCA),重点研究了具有髓鞘轴突的大直径背根神经节(L-DRG)神经元。对 K 通道拮抗剂 κM-conopeptide RIIIJ(RIIIJ)的不同反应可靠地鉴定了六个离散的功能细胞类群。在两个神经元子类(L1 和 L2)中,RIIIJ 阻断导致 [Ca]增加。同时进行电生理学和钙成像显示,RIIIJ 引起的 [Ca]增加对应于不同的动作电位(AP)模式,L1 神经元中的 AP 串,L2 神经元中的散发性放电。遗传标记的小鼠证实 L1 神经元是本体感受器。L1 和 L2 神经元的单细胞转录组显示,L2 神经元是 Aδ-低阈值机械感受器。在几个 L-DRG 子类(L1、L2、L3 和 L5)中,应用 K1.1 选择性拮抗剂 Dendrotoxin-K 可复制 RIIIJ 的作用,这表明存在功能性 K1.1/K1.2 异源二聚体通道。在其他神经元子类中使用这种方法最终应该加速对混合群体中个体感觉神经元子类的全面分类和特征描述。