Bhaban Shreyas, Talukdar Saurav, Li Mingang, Hays Thomas, Seiler Peter, Salapaka Murti
Department of Electrical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA.
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA.
IEEE ASME Trans Mechatron. 2018 Aug;23(4):1532-1542. doi: 10.1109/TMECH.2018.2852367. Epub 2018 Jul 2.
Optical tweezers have enabled important insights into intracellular transport through the investigation of motor proteins, with their ability to manipulate particles at the microscale, affording femto newton force resolution. Its use to realize a constant force clamp has enabled vital insights into the behavior of motor proteins under different load conditions. However, the varying nature of disturbances and the effect of thermal noise pose key challenges to force regulation. Furthermore, often the main aim of many studies is to determine the motion of the motor and the statistics related to the motion, which can be at odds with the force regulation objective. In this article, we propose a mixed objective optimization framework using a model-based design, that achieves the dual goals of force regulation and real time motion estimation with quantifiable guarantees. Here, we minimize the norm for the force regulation and error in step estimation while maintaining the norm of the noise on step estimate within user specified bounds. We demonstrate the efficacy of the framework through extensive simulations and an experimental implementation using an optical tweezer setup with live samples of the motor protein 'kinesin'; where regulation of forces below 1 piconewton with errors below 10% is obtained while simultaneously providing real time estimates of motor motion.
光镊技术通过对驱动蛋白的研究,使人们对细胞内运输有了重要的认识。光镊能够在微观尺度上操纵粒子,提供飞牛顿级的力分辨率。利用光镊实现恒力钳,使人们对驱动蛋白在不同负载条件下的行为有了至关重要的认识。然而,干扰的变化性质和热噪声的影响对力的调节构成了关键挑战。此外,许多研究的主要目的往往是确定驱动蛋白的运动以及与该运动相关的统计数据,这可能与力调节目标不一致。在本文中,我们提出了一种基于模型设计的混合目标优化框架,该框架实现了力调节和实时运动估计的双重目标,并具有可量化的保证。在这里,我们在将步长估计中的噪声范数保持在用户指定界限内的同时,最小化力调节的范数和步长估计中的误差。我们通过广泛的模拟以及使用带有驱动蛋白“驱动蛋白”活样本的光镊装置进行的实验实现,证明了该框架的有效性;在该实验中,实现了低于1皮牛顿的力调节,误差低于10%,同时还能实时估计驱动蛋白的运动。